SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(De Baar M.) "

Sökning: WFRF:(De Baar M.)

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Romanelli, F, et al. (författare)
  • Overview of the JET results
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
3.
  • Stroth, U., et al. (författare)
  • Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts.
  •  
4.
  • Meyer, H.F., et al. (författare)
  • Overview of physics studies on ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
  •  
5.
  • Reimerdes, H., et al. (författare)
  • Overview of the TCV tokamak experimental programme
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The tokamak a configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019-20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include T (e)/T (i) similar to 1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with 'small' (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019-20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations.
  •  
6.
  • Ongena, J., et al. (författare)
  • Recent progress on JET towards the ITER reference mode of operation at high density
  • 2001
  • Ingår i: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 43, s. A11-A30
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent progress towards obtaining high density and high confinement in JET as required for the ITER reference scenario at Q = 10 is summarized. Plasmas with simultaneous confinement H-98(y.2) = 1 and densities up to n/n(Gw) similar to 1 are now routinely obtained. This has been possible (i) by using plasmas at high (delta similar to 0.5) and medium (delta similar to 0.3-0.4) triangularity with sufficient heating power to maintain Type I ELMs, (ii) with impurity seeded plasmas at high (delta similar to 0.5) and low (delta less than or equal to 0.2) triangularity, (iii) with an optimized pellet injection sequence, maintaining the energy confinement and raising the density, and (iv) by carefully tuning the gas puff rate leading to plasmas with peaked density profiles and good confinement at long time scales. These high performance discharges exhibit Type I ELMs, with a new and more favourable behaviour observed at high densities, requiring further studies. Techniques for a possible mitigation of these ELMs are discussed, and first promising results are obtained with impurity seeding in discharges at high triangularity. Scaling studies using the new data of this year show a strong dependence of confinement on upper triangularity, density and proximity to the Greenwald limit. Observed MHD instabilities and methods to avoid these in high density and high confinement plasmas are discussed.
  •  
7.
  • Lamalle, P. U., et al. (författare)
  • Expanding the operating space of ICRF on JET with a view to ITER
  • 2006
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 46:2, s. 391-400
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports on ITER-relevant ion cyclotron resonance frequency (ICRF) physics investigated on JET in 2003 and early 2004. Minority heating of helium three in hydrogen plasmas-(He-3)H-was systematically explored by varying the 3 He concentration and the toroidal phasing of the antenna arrays. The best heating performance (a maximum electron temperature of 6.2 keV with 5 MW of ICRF power) was obtained with a preferential wave launch in the direction of the plasma current. A clear experimental demonstration was made of the sharp and reproducible transition to the mode conversion heating regime when the 3 He concentration increased above similar to 2%. In the latter regime the best heating performance (a maximum electron temperature of 8 keV with 5 MW of ICRF power) was achieved with dipole array phasing, i.e. a symmetric antenna power spectrum. Minority heating of deuterium in hydrogen plasmas-(D)H-was also investigated but was found inaccessible because this scenario is too sensitive to impurity ions with Z/A = 1/2 such as C6+, small amounts of which directly lead into the mode conversion regime. Minority heating of up to 3% of tritium in deuterium plasmas was systematically investigated during the JET trace tritium experimental campaign (TTE). This required operating JET at its highest possible magnetic field (3.9 to 4 T) and the ICRF system at its lowest frequency (23 MHz). The interest of this scenario for ICRF heating at these low concentrations and its efficiency at boosting the suprathermal neutron yield were confirmed, and the measured neutron and gammay ray spectra permit interesting comparisons with advanced ICRF code simulations. Investigations of finite Larmor radius effects on the RF-induced high-energy tails during second harmonic (omega = 2 omega(c)) heating of a hydrogen minority in D plasmas clearly demonstrated a strong decrease in the RF diffusion coefficient at proton energies similar to 1 MeV in agreement with theoretical expectations. Fast wave heating and current drive experiments in deuterium plasmas showed effective direct electron heating with dipole phasing of the antennas, but only small changes of the central plasma current density were observed with the directive phasings, in particular at low single pass damping. New investigations of the heating efficiency of ICRF antennas confirmed its strong dependence on the parallel wavenumber spectrum. Advances in topics of a more technological nature are also summarized: ELM studies using fast RF measurements, the successful experimental demonstration of a new ELM-tolerant antenna matching scheme and technical enhancements planned on the JET ICRF system for 2006, they being equally strongly driven by the preparation for ITER.
  •  
8.
  • Lamalle, P.U, et al. (författare)
  • Expanding the operating space of ICRF on JET with a view to ITER
  • 2006
  • Ingår i: Nucl. Fusion. ; 46, s. 391-
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury (Hg) has been used for millennia in many applications, primarily in artisanal mining and as an electrode in the chlor–alkali industry. It is anthropogenically emitted as a pollutant from coal fired power plants and naturally emitted, primarily from volcanoes. Its unique chemical characteristics enable global atmospheric transport and it is deposited after various processes, ultimately ending up in one of its final sinks, such as incorporated into deep sediment or bioaccumulated, primarily in the marine environment. All forms of Hg have been established as toxic, and there have been no noted biological benefits from the metal.Throughout time, there have been notable incidents of Hg intoxication documented, and the negative health effects have been documented to those chronically or acutely exposed. Today, exposure to Hg is largely diet or occupationally dependent, however, many are exposed to Hg from their amalgam fillings. This paper puts a tentative monetary value on Hg polluted food sources in the Arctic, where local, significant pollution sources are limited, and relates this to costs for strategies avoiding Hg pollution and to remediation costs of contaminated sites in Sweden and Japan. The case studies are compiled to help policy makers and the public to evaluate whether the benefits to the global environment from banning Hg and limiting its initial emission outweigh the benefits from its continued use or lack of control of Hg emissions. The cases we studied are relevant for point pollution sources globally and their remediation costs ranged between 2500 and 1.1 million US$ kg−1 Hg isolated from the biosphere. Therefore, regulations discontinuing mercury uses combined with extensive flue gas cleaning for all power plants and waste incinerators is cost effective.
  •  
9.
  •  
10.
  • Mantsinen, M. J., et al. (författare)
  • Localized bulk electron heating with ICRF mode conversion in the JET tokamak
  • 2004
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 44:1, s. 33-46
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion cyclotron resonance frequencies (ICRF) mode conversion has been developed for localized on-axis and off-axis bulk electron heating on the JET tokamak. The fast magnetosonic waves launched from the low-field side ICRF antennas are mode-converted to short-wavelength waves on the high-field side of the He-3 ion cyclotron resonance layer in D and He-4 plasmas and subsequently damped on the bulk electrons. The resulting electron power deposition, measured using ICRF power modulation, is narrow with a typical full-width at half-maximum of approximate to30 cm (i.e. about 30% of the minor radius) and the total deposited power to electrons comprises at least up to 80% of the applied ICRF power. The ICRF mode conversion power deposition has been kept constant using He-3 bleed throughout the ICRF phase with a typical duration of 4-6 s, i.e. 15-40 energy confinement times. Using waves propagating in the counter-current direction minimizes competing ion damping in the presence of co-injected deuterium beam ions.
  •  
11.
  • Stork, D., et al. (författare)
  • Overview of transport, fast particle and heating and current drive physics using tritium in JET plasmas
  • 2005
  • Ingår i: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 45:10, s. S181-S194
  • Tidskriftsartikel (refereegranskat)abstract
    • Results are presented from the JET Trace Tritium Experimental (TTE) campaign using minority tritium (T) plasmas (n(T)/n(D) < 3%). Thermal tritium particle transport coefficients (D-T, nu(T)) are found to exceed neo-classical values in all regimes, except in ELMy H-modes at high densities and in the region of internal transport barriers (ITBs) in reversed shear plasmas. In ELMy H-mode dimensionless parameter scans, at q(95) 2.8 and triangularity delta = 0.2, the T particle transport scales in a gyro-Bohm manner in the inner plasma (r/a < 0.4), whilst the outer plasma particle transport scaling is more Bohm-like. Dimensionless parameter scans show contrasting behaviour for the trace particle confinement (increases with collisionality, nu* and beta) and bulk energy confinement (decreases with nu* and is independent of beta). In an extended ELMy H-mode data set, with rho*, nu*, and q varied but with neo-classical tearing modes (NTMs) either absent or limited to weak, benign core modes (4/3 or above), the multiparameter fit to the normalized diffusion coefficient in the outer plasma (0.65 < r/a < 0.8) gives D-T/B-phi similar to rho*(2.46) nu*(-0.23) beta(-1.01) q(2.03). In hybrid scenarios (q(min) similar to 1, low positive shear, no sawteeth), the T particle confinement is found to scale with increasing triangularity and plasma current. Comparing regimes (ELMy H-mode, ITB plasma and hybrid scenarios) in the outer plasma region, a correlation of high values of D-T with high values Of nu(T) is seen. The normalized diffusion coefficients for the hybrid and ITB scenarios do not fit the scaling derived for ELMy H-modes. The normalized tritium diffusion scales with normalized poloidal Larmor radius (rho(theta)* = q rho*) in a manner close to gyro-Bohm (similar to rho(sigma)*(3)), with an added inverse P dependence. The effects of ELMs, sawteeth and NTMs on the T particle transport are described. Fast-ion confinement in current-hole (CH) plasmas was tested in TTE by tritium neutral beam injection into JET CH plasmas. gamma-rays from the reactions of fusion alpha and beryllium impurities (Be-9(alpha, n gamma)C-12) characterized the fast fusion-alpha population evolution. The gamma-decay times are consistent with classical alpha plus parent fast triton slowing down times (tau(Ts) + tau(alpha s)) for high plasma currents (I-p > 2 MA) and monotonic q-profiles. In CH discharges the gamma-ray emission decay times are much lower than classical (tau(Ts) + tau(alpha s)), indicating alpha confinement degradation, due to the orbit losses and particle orbit drift predicted by a 3-D Fokker-Planck numerical code and modelled using TRANSP.
  •  
12.
  • Zastrow, K. D., et al. (författare)
  • Tritium transport experiments on the JET tokamak
  • 2004
  • Ingår i: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 46, s. B255-B265
  • Tidskriftsartikel (refereegranskat)abstract
    • An overview is given of the experimental method, the analysis technique and the results for trace tritium experiments conducted on the JET tokamak in 2003. Observations associated with events such as sawtooth collapses, neo-classical tearing modes and edge localized modes are described. Tritium transport is seen to approach neo-classical levels in the plasma core at high density and low q(95), and in the transport barrier region of internal transport barrier (ITB) discharges. Tritium transport remains well above neo-classical levels in all other cases. The correlation of the measured tritium diffusion coefficient and convection velocity for normalized minor radii r/a = [0.65, 0.80] with the controllable parameters q95 and plasma density are found to be consistent for all operational regimes (ELMy H-mode discharges with or without ion cyclotron frequency resonance heating, hybrid scenario and ITB discharges). Scaling with local physics parameters is best described by gyro-Bohm scaling with an additional inverse beta dependence.
  •  
13.
  • Bakker, D. C. E., et al. (författare)
  • An update to the surface ocean CO2 atlas (SOCAT version 2)
  • 2014
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 6:1, s. 69-90
  • Tidskriftsartikel (refereegranskat)abstract
    • The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO 2 values) and extended data coverage (from 1968-2007 to 1968-2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longerterm variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models. © Author(s) 2014. CC Attribution 3.0 License.
  •  
14.
  • Loarte, A., et al. (författare)
  • Characterization of pedestal parameters and edge localized mode energy losses in the Joint European Torus and predictions for the International Thermonuclear Experimental Reactor
  • 2004
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 11:5, s. 2668-2678
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the experimental characterization of pedestal parameters, edge localized mode (ELM) energy, and particle losses from the main plasma and the corresponding ELM energy fluxes on plasma facing components for a series of dedicated experiments in the Joint European Torus (JET). From these experiments, it is demonstrated that the simple hypothesis relating the peeling-ballooning linear instability to ELM energy losses is not valid. Contrary to previous observations at lower triangularities, small energy losses at low collisionality have been obtained in regimes at high plasma triangularity and q(95)similar to4.5, indicating that the edge plasma magnetohydrodynamic stability is linked with the transport mechanisms that lead to the loss of energy by conduction during type I ELMs. Measurements of the ELM energy fluxes on the divertor target show that their time scale is linked to the ion transport along the field and the formation of a high energy sheath, in agreement with kinetic modeling of ELMs. Higher density ELMs, of a convective nature, lead to overall much longer time scales for the ELM energy flux, with more than 80% of the ELM energy flux arriving after the surface divertor temperature has reached its maximum value. On the contrary, for low density ELMs, of a conductive nature, up to 40% of the energy flux arrives at the divertor target before the surface divertor temperature has reached its maximum value. These large and more conductive ELMs may lead to up to similar to50% of the ELM energy reaching the main wall plasma facing components instead of the divertor target. The extrapolation to the International Thermonuclear Experimental Reactor of the obtained results is described and the main uncertainties discussed.
  •  
15.
  • Mantsinen, M. J., et al. (författare)
  • Alpha-tail production with ion-cyclotron-resonance heating of He-4-beam ions in JET plasmas
  • 2002
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 88:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Third-harmonic ion-cyclotron-resonance heating of He-4-beam ions has produced for the first time on the JET tokamak high-energy populations of He-4 ions to simulate 3.5 MeV fusion-born alpha (alpha) particles. Acceleration of He-4 ions to the MeV energy range is confirmed by gamma-ray emission from the nuclear reaction Be-9(alpha, ngamma) C-12 and excitation of Alfven eigenmodes. Concomitant electron heating and sawtooth stabilization are observed. The scheme could be used in next-step tokamaks to gain information on trapped alpha particles and to test a diagnostics in the early nonactivated phase of operation.
  •  
16.
  • McDonald, C., et al. (författare)
  • ELMy H-modes in JET helium-4 plasmas
  • 2004
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 46:3, s. 519-534
  • Tidskriftsartikel (refereegranskat)abstract
    • ELMy H-modes in helium-4 plasmas provide valuable information on ELMy H-mode physics as well as a possible early low activation operational phase for next-step tokamaks, such as ITER. With this in mind, a series of helium-4 H-mode experiments were performed on JET with pure helium-4 NBI auxiliary heating (up to 12 MW). A set of ELMy H-mode plasmas were produced, in both the Type I ELM regime and a second regime, which showed characteristics similar to the deuterium Type III regime, but with a reverse ELM frequency dependence on power. Sawteeth were also observed, and had similar behaviour to those seen in deuterium. Compared with deuterium plasmas, Type I ELMy H-mode confinement is seen to be 28 +/- 6% poorer in helium-4 plasmas and the L-H power threshold 42 +/- 10% larger. This is the opposite of the behaviour predicted by experimental isotope mass scalings from hydrogenic plasmas.Comparison with a wider hydrogenic database, enables the effects of isotopic charge and mass to be studied independently.
  •  
17.
  • Graves, J. P., et al. (författare)
  • Experimental verification of sawtooth control by energetic particles in ion cyclotron resonance heated JET tokamak plasmas
  • 2010
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 50:5, s. 052002-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Experimental evidence from the JET tokamak is presented supporting the predictions of a recent theory (Graves et al 2009 Phys. Rev. Lett. 102 065005) on sawtooth instability control by toroidally propagating ion cyclotron resonance waves. Novel experimental conditions minimized a possible alternate effect of magnetic shear modification by ion cyclotron current drive, and enabled the dependence of the new energetic ion mechanism to be tested over key variables. The results have favourable implications on sawtooth control by ion cyclotron resonance waves in a fusion reactor.
  •  
18.
  •  
19.
  • Testa, D., et al. (författare)
  • Alfven mode stability and wave-particle interaction in the JET tokamak : prospects for scenario development and control schemes in burning plasma experiments
  • 2004
  • Ingår i: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 46:7, s. S59-S79
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the effect of different ion cyclotron resonance frequency (ICRF) heating schemes, of error field modes, of the plasma shape and edge magnetic shear, and of the ion delB drift direction on the stability of Alfven eigenmodes (AEs). The use of multi-frequency or 2nd harmonic minority ICRF heating at high plasma density gives rise to a lower fast ion pressure gradient in the plasma core and to a reduced mode activity in the Alfven frequency range. Externally excited low-amplitude error fields lead to a much larger AE instability threshold, which we attribute to a moderate radial redistribution of the fast ions. The edge plasma shape has a clear stabilizing effect on high-n, radially localized AEs. The damping rate of n = 1 toroidal AEs is a factor 3 higher when the ion VB drift is directed towards the divertor. These results represent a useful step towards the extrapolation of current scenarios to the inclusion of fusion-born alpha particles in ITER, with possible application for feedback control schemes for the various ITER operating regimes.
  •  
20.
  •  
21.
  • Mantica, P., et al. (författare)
  • Progress in Understanding Heat Transport at JET
  • 2004
  • Ingår i: 20th IAEA Fusion Energy Conference, Villamoura, Portugal November 1-6 2004, IAEA. ; , s. Paper EX/P6-18
  • Konferensbidrag (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy