SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(De Buizer James M.) "

Sökning: WFRF:(De Buizer James M.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhang, Yichen, et al. (författare)
  • An Ordered Envelope-Disk Transition in the Massive Protostellar Source G339.88-1.26
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 873:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report molecular line observations of the massive protostellar source G339.88-1.26 with the Atacama Large Millimeter/Submillimeter Array. The observations reveal a highly collimated SiO jet extending from the 1.3 mm continuum source, which connects to a slightly wider but still highly collimated CO outflow. Rotational features perpendicular to the outflow axis are detected in various molecular emissions, including SiO, SO 2 , H 2 S, CH 3 OH, and H 2 CO emissions. Based on their spatial distributions and kinematics, we find that they trace different parts of the envelope-disk system. The SiO emission traces the disk and inner envelope in addition to the jet. The CH 3 OH and H 2 CO emissions mostly trace the infalling-rotating envelope and are enhanced around the transition region between envelope and disk, i.e., the centrifugal barrier. The SO 2 and H 2 S emissions are enhanced around the centrifugal barrier and also trace the outer part of the disk. Envelope kinematics are consistent with rotating-infalling motion, while those of the disk are consistent with Keplerian rotation. The radius and velocity of the centrifugal barrier are estimated to be about 530 au and 6 , respectively, leading to a central mass of about 11 M o , consistent with estimates based on spectral energy distribution fitting. These results indicate that an ordered transition from an infalling-rotating envelope to a Keplerian disk through a centrifugal barrier, accompanied by changes of types of molecular line emissions, is a valid description of this massive protostellar source. This implies that at least some massive stars form in a similar way to low-mass stars via core accretion.
  •  
2.
  • Rosero, Viviana, et al. (författare)
  • The SOMA Radio Survey. I. Comprehensive SEDs of High-mass Protostars from Infrared to Radio and the Emergence of Ionization Feedback
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 873:1
  • Forskningsöversikt (refereegranskat)abstract
    • We study centimeter continuum emission of eight high- and intermediate-mass protostars that are part of the SOFIA Massive Star Formation Survey, thus building extended spectral energy distributions (SEDs) from the radio to the infrared. We discuss the morphology seen in the centimeter continuum images, which are mostly derived from archival Very Large Array data, and the relation to infrared morphology. We use the SEDs to test new models of high-mass star formation including radiative and disk-wind feedback and associated free-free and dust continuum emission. We show that interferometric data of the centimeter continuum flux densities provide additional, stringent tests of the models by constraining the ionizing luminosity of the source; they also help to break degeneracies encountered when modeling the infrared-only SEDs, especially for the protostellar mass. Our derived parameters are consistent with physical parameters estimated by other methods, such as dynamical protostellar masses. We find a few examples of additional stellar sources in the vicinity of the high-mass protostars, which may be low-mass young stellar objects. However, the stellar multiplicity of the regions, at least as traced by radio continuum emission, appears to be relatively low.
  •  
3.
  • Zhang, Yichen, et al. (författare)
  • Massive Protostars in a Protocluster—A Multi-scale ALMA View of G35.20-0.74N
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 936:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed study of the massive star-forming region G35.2-0.74N with Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm multi-configuration observations. At 0.″2 (440 au) resolution, the continuum emission reveals several dense cores along a filamentary structure, consistent with previous ALMA 0.85 mm observations. At 0.″03 (66 au) resolution, we detect 22 compact sources, most of which are associated with the filament. Four of the sources are associated with compact centimeter continuum emission, and two of these are associated with H30α recombination line emission. The H30α line kinematics shows the ordered motion of the ionized gas, consistent with disk rotation and/or outflow expansion. We construct models of photoionized regions to simultaneously fit the multiwavelength free-free fluxes and the H30α total fluxes. The derived properties suggest the presence of at least three massive young stars with nascent hypercompact H ii regions. Two of these ionized regions are surrounded by a large rotating structure that feeds two individual disks, revealed by dense gas tracers, such as SO2, H2CO, and CH3OH. In particular, the SO2 emission highlights two spiral structures in one of the disks and probes the faster-rotating inner disks. The 12CO emission from the general region reveals a complex outflow structure, with at least four outflows identified. The remaining 18 compact sources are expected to be associated with lower-mass protostars forming in the vicinity of the massive stars. We find potential evidence for disk disruption due to dynamic interactions in the inner region of this protocluster. The spatial distribution of the sources suggests a smooth overall radial density gradient without subclustering, but with tentative evidence of primordial mass segregation.
  •  
4.
  • Fedriani, Rubén, 1991, et al. (författare)
  • The SOFIA Massive (SOMA) Star Formation Survey. IV. Isolated Protostars
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 942:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present similar to 10-40 mu m SOFIA-FORCAST images of 11 isolated protostars as part of the SOFIA Massive (SOMA) Star Formation Survey, with this morphological classification based on 37 mu m imaging. We develop an automated method to define source aperture size using the gradient of its background-subtracted enclosed flux and apply this to build spectral energy distributions (SEDs). We fit the SEDs with radiative transfer models, developed within the framework of turbulent core accretion (TCA) theory, to estimate key protostellar properties. Here, we release the sedcreator python package that carries out these methods. The SEDs are generally well fitted by the TCA models, from which we infer initial core masses M ( c ) ranging from 20-430 M (circle dot), clump mass surface densities sigma(cl) similar to 0.3-1.7 g cm(-2), and current protostellar masses m (*) similar to 3-50 M (circle dot). From a uniform analysis of the 40 sources in the full SOMA survey to date, we find that massive protostars form across a wide range of clump mass surface density environments, placing constraints on theories that predict a minimum threshold sigma(cl) for massive star formation. However, the upper end of the m (*)-sigma(cl) distribution follows trends predicted by models of internal protostellar feedback that find greater star formation efficiency in higher sigma(cl) conditions. We also investigate protostellar far-IR variability by comparison with IRAS data, finding no significant variation over an similar to 40 yr baseline.
  •  
5.
  • Liu, Mengyao, et al. (författare)
  • The SOFIA Massive (SOMA) Star Formation Survey. II. High Luminosity Protostars
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 874:1
  • Forskningsöversikt (refereegranskat)abstract
    • We present multiwavelength images observed with SOFIA-FORCAST from similar to 10 to 40 mu m of seven high luminosity massive protostars, as part of the SOFIA Massive Star Formation Survey. Source morphologies at these wavelengths appear to be influenced by outflow cavities and extinction from dense gas surrounding the protostars. Using these images, we build spectral energy distributions (SEDs) of the protostars, also including archival data from Spitzer, Herschel, and other facilities. Radiative transfer (RT) models of Zhang & Tan, based on Turbulent Core Accretion theory, are then fit to the SEDs to estimate key properties of the protostars. Considering the best five models fit to each source, the protostars have masses m* similar to 12-64 M circle dot accreting at rates of m* similar to 10(-4) -10(-3) M circle dot yr(-1) inside cores of initial masses M-c similar to 100-500 M circle dot embedded in clumps with mass surface densities Sigma(cl) similar to 0.1-3 g cm(-2) and span a luminosity range of 10(4) -10(6) L circle dot. Compared with the first eight protostars in Paper I, the sources analyzed here are more luminous and, thus, likely to be more massive protostars. They are often in a clustered environment or have a companion protostar relatively nearby. From the range of parameter space of the models, we do not see any evidence that Sigma(cl) needs to be high to form these massive stars. For most sources, the RT models provide reasonable fits to the SEDs, though the cold clump material often influences the long wavelength fitting. However, for sources in very clustered environments, the model SEDs may not be such a good description of the data, indicating potential limitations of the models for these regions.
  •  
6.
  • Liu, Mengyao, et al. (författare)
  • The SOFIA Massive (SOMA) Star Formation Survey. III. From Intermediate- to High-mass Protostars
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 904:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present similar to 10-40 mm SOFIA-FORCAST images of 14 intermediate-mass protostar candidates as part of the SOFIA Massive (SOMA) Star Formation Survey. We build spectral energy distributions, also using archival Spitzer, Herschel, and IRAS data. We then fit the spectral energy distributions with radiative transfer models of Zhang & Tan, based on turbulent core accretion theory, to estimate key protostellar properties. With the addition of these intermediate-mass sources, based on average properties derived from SED fitting, SOMA protostars span luminosities from similar to 10(2) to 10(6) L-circle dot, current protostellar masses from similar to 0.5 to 35 M-circle dot, and ambient clump mass surface densities, Scl, from 0.1 to g cm(-2). A wide range of evolutionary states of the individual protostars and of the protocluster environments is also probed. We have also considered about 50 protostars identified in infrared dark clouds that are expected to be at the earliest stages of their evolution. With this global sample, most of the evolutionary stages of high- and intermediate-mass protostars are probed. The best-fitting models show no evidence that a threshold value of the protocluster clump mass surface density is required to form protostars up to similar to 25 M.. However, to form more massive protostars, there is tentative evidence that Sigma(cl) needs to be greater than or similar to 1 g cm(-2). We discuss how this is consistent with expectations from core accretion models that include internal feedback from the forming massive star.
  •  
7.
  • Zhang, Yichen, et al. (författare)
  • Dynamics of a massive binary at birth
  • 2019
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 3:6, s. 517-523
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Almost all massive stars have bound stellar companions, existing in binaries or higher-order multiples(1-5). While binarity is theorized to be an essential feature of how massive stars form(6), essentially all information about such properties is derived from observations of already formed stars, whose orbital properties may have evolved since birth. Little is known about binarity during formation stages. Here we report high-angular-resolution observations of 1.3 mm continuum and H30 alpha recombination line emission, which reveal a massive protobinary with apparent separation of 180 au at the centre of the massive star-forming region IRAS 07299-1651. From the line-of-sight velocity difference of 9.5 km s(-1) of the two protostars, the binary is estimated to have a minimum total mass of 18 solar masses, consistent with several other metrics, and maximum period of 570 yr, assuming a circular orbit. The H30 alpha line from the primary protostar shows kinematics consistent with rotation along a ring of radius of 12 au. The observations indicate that disk fragmentation at several hundred astronomical units may have formed the binary, and much smaller disks are feeding the individual protostars.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy