SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(De Cecco Carlo N.) "

Sökning: WFRF:(De Cecco Carlo N.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baumann, Stefan, et al. (författare)
  • Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve -results from the MACHINE registry
  • 2019
  • Ingår i: European Journal of Radiology. - : ELSEVIER IRELAND LTD. - 0720-048X .- 1872-7727. ; 119
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: This study investigated the impact of gender differences on the diagnostic performance of machine-learning based coronary CT angiography (cCTA)-derived fractional flow reserve (CT-FFR mL ) for the detection of lesion-specific ischemia. Method: Five centers enrolled 351 patients (73.5% male) with 525 vessels in the MACHINE (Machine leArning Based CT angiograpHy derIved FFR: a Multi-ceNtEr) registry. CT-FFRML and invasive FFR amp;lt;= 0.80 were considered hemodynamically significant, whereas cCTA luminal stenosis amp;gt;= 50% was considered obstructive. The diagnostic performance to assess lesion-specific ischemia in both men and women was assessed on a per-vessel basis. Results: In total, 398 vessels in men and 127 vessels in women were included. Compared to invasive FFR, CT-FFRML reached a sensitivity, specificity, positive predictive value, and negative predictive value of 78% (95%CI 72-84), 79% (95%CI 73-84), 75% (95%CI 69-79), and 82% (95%CI: 76-86) in men vs. 75% (95%CI 58-88), 81 (95%CI 72-89), 61% (95%CI 50-72) and 89% (95%CI 82-94) in women, respectively. CT-FFRML showed no statistically significant difference in the area under the receiver-operating characteristic curve (AUC) in men vs. women (AUC: 0.83 [95%CI 0.79-0.87] vs. 0.83 [95%CI 0.75-0.89], p = 0.89). CT-FFRML was not superior to cCTA alone [AUC: 0.83 (95%CI: 0.75-0.89) vs. 0.74 (95%CI: 0.65-0.81), p = 0.12] in women, but showed a statistically significant improvement in men [0.83 (95%CI: 0.79-0.87) vs. 0.76 (95%CI: 0.71-0.80), p = 0.007]. Conclusions: Machine-learning based CT-FFR performs equally in men and women with superior diagnostic performance over cCTA alone for the detection of lesion-specific ischemia.
  •  
2.
  • Tesche, Christian, et al. (författare)
  • Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR Results From MACHINE Registry
  • 2020
  • Ingår i: JACC Cardiovascular Imaging. - : ELSEVIER SCIENCE INC. - 1936-878X .- 1876-7591. ; 13:3, s. 760-770
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVESThis study was conducted to investigate the influence of coronary artery calcium (CAC) score on the diagnostic performance of machine-learning-based coronary computed tomography (CT) angiography (cCTA)-derived fractional flow reserve (CT-FFR).BACKGROUNDCT-FFR is used reliably to detect lesion-specific ischemia. Novel CT-FFR algorithms using machine-learning artificial intelligence techniques perform fast and require less complex computational fluid dynamics. Yet, influence of CAC score on diagnostic performance of the machine-learning approach has not been investigated.METHODSA total of 482 vessels from 314 patients (age 62.3 +/- 9.3 years, 77% male) who underwent cCTA followed by invasive FFR were investigated from the MACHINE (Machine Learning based CT Angiography derived FFR: a Multi-center Registry) registry data. CAC scores were quantified using the Agatston convention. The diagnostic performance of CT-FFR to detect lesion-specific ischemia was assessed across all Agatston score categories (CAC 0, >0 to <100, 100 to <400, and >=$400) on a per-vessel level with invasive FFR as the reference standard.RESULTSThe diagnostic accuracy of CT-FFR versus invasive FFR was superior to cCTA alone on a per-vessel level (78% vs. 60%) and per patient level (83% vs. 73%) across all Agatston score categories. No statistically significant differences in the diagnostic accuracy, sensitivity, or specificity of CT-FFR were observed across the categories. CT-FFR showed good discriminatory power in vessels with high Agatston scores (CAC >= 400) and high performance in low-to-intermediate Agatston scores (CAC >0 to <400) with a statistically significant difference in the area under the receiver-operating characteristic curve (AUC) (AUC: 0.71 [95% confidence interval (CI): 0.57 to 0.85] vs. 0.85 [95% CI: 0.82 to 0.89], p = 0.04). CT-FFR showed superior diagnostic value over cCTA in vessels with high Agatston scores (CAC >= 400: AUC 0.71 vs. 0.55, p = 0.04) and low-to-intermediate Agatston scores (CAC >0 to <400: AUC 0.86 vs. 0.63, p < 0.001).CONCLUSIONSMachine-learning-based CT-FFR showed superior diagnostic performance over cCTA alone in CAC with a significant difference in the performance of CT-FFR as calcium burden/Agatston calcium score increased. (Machine Learning Based CT Angiography Derived FFR: a Multicenter, Registry [MACHINE] NCT02805621). (C) 2020 by the American College of Cardiology Foundation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy