SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(De Ninno G.) "

Sökning: WFRF:(De Ninno G.)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allaria, E., et al. (författare)
  • Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet
  • 2012
  • Ingår i: Nature Photonics. - 1749-4885. ; 6:10, s. 699-704
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-electron lasers (FELs) are promising devices for generating light with laser-like properties in the extreme ultraviolet and X-ray spectral regions. Recently, FELs based on the self-amplified spontaneous emission (SASE) mechanism have allowed major breakthroughs in diffraction and spectroscopy applications, despite the relatively large shot-to-shot intensity and photon-energy fluctuations and the limited longitudinal coherence inherent in the SASE mechanism. Here, we report results on the initial performance of the FERMI seeded FEL, based on the high-gain harmonic generation configuration, in which an external laser is used to initiate the emission process. Emission from the FERMI FEL-1 source occurs in the form of pulses carrying energy of several tens of microjoules per pulse and tunable throughout the 65 to 20 nm wavelength range, with unprecedented shot-to-shot wavelength stability, low-intensity fluctuations, close to transform-limited bandwidth, transverse and longitudinal coherence and full control of polarization.
  •  
2.
  • Iablonskyi, D., et al. (författare)
  • Slow Interatomic Coulombic Decay of Multiply Excited Neon Clusters
  • 2016
  • Ingår i: Physical Review Letters. - 0031-9007. ; 117:27
  • Tidskriftsartikel (refereegranskat)abstract
    • Ne clusters (∼5000 atoms) were resonantly excited (2p→3s) by intense free electron laser (FEL) radiation at FERMI. Such multiply excited clusters can decay nonradiatively via energy exchange between at least two neighboring excited atoms. Benefiting from the precise tunability and narrow bandwidth of seeded FEL radiation, specific sites of the Ne clusters were probed. We found that the relaxation of cluster surface atoms proceeds via a sequence of interatomic or intermolecular Coulombic decay (ICD) processes while ICD of bulk atoms is additionally affected by the surrounding excited medium via inelastic electron scattering. For both cases, cluster excitations relax to atomic states prior to ICD, showing that this kind of ICD is rather slow (picosecond range). Controlling the average number of excitations per cluster via the FEL intensity allows a coarse tuning of the ICD rate.
  •  
3.
  • Perosa, G., et al. (författare)
  • Femtosecond Polarization Shaping of Free-Electron Laser Pulses
  • 2023
  • Ingår i: Physical Review Letters. - 0031-9007. ; 131:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the generation of extreme-ultraviolet (XUV) free-electron laser (FEL) pulses with timedependent polarization. To achieve polarization modulation on a femtosecond timescale, we combine two mutually delayed counterrotating circularly polarized subpulses from two cross-polarized undulators. The polarization profile of the pulses is probed by angle-resolved photoemission and above-threshold ionization of helium; the results agree with solutions of the time-dependent Schrodinger equation. The stability limit of the scheme is mainly set by electron-beam energy fluctuations, however, at a level that will not compromise experiments in the XUV. Our results demonstrate the potential to improve the resolution and element selectivity of methods based on polarization shaping and may lead to the development of new coherent control schemes for probing and manipulating core electrons in matter.
  •  
4.
  • Takanashi, T, et al. (författare)
  • Time-Resolved Measurement of Interatomic Coulombic Decay Induced by Two-Photon Double Excitation of Ne2
  • 2017
  • Ingår i: Physical Review Letters. - 0031-9007. ; 118:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The hitherto unexplored two-photon doubly excited states [Ne∗(2p-13s)]2 were experimentally identified using the seeded, fully coherent, intense extreme ultraviolet free-electron laser FERMI. These states undergo ultrafast interatomic Coulombic decay (ICD), which predominantly produces singly ionized dimers. In order to obtain the rate of ICD, the resulting yield of Ne2+ ions was recorded as a function of delay between the extreme ultraviolet pump and UV probe laser pulses. The extracted lifetimes of the long-lived doubly excited states, 390(-130/+450) fs, and of the short-lived ones, less than 150 fs, are in good agreement with ab initio quantum mechanical calculations.
  •  
5.
  •  
6.
  • Finetti, P., et al. (författare)
  • Pulse duration of seeded free electron lasers
  • 2017
  • Ingår i: Physical Review X. - 2160-3308. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The pulse duration, and, more generally, the temporal intensity profile of free-electron laser (FEL) pulses, is of utmost importance for exploring the new perspectives offered by FELs; it is a nontrivial experimental parameter that needs to be characterized. We measured the pulse shape of an extreme ultraviolet externally seeded FEL operating in high-gain harmonic generation mode. Two different methods based on the cross-correlation of the FEL pulses with an external optical laser were used. The two methods, one capable of single-shot performance, may both be implemented as online diagnostics in FEL facilities. The measurements were carried out at the seeded FEL facility FERMI. The FEL temporal pulse characteristics were measured and studied in a range of FEL wavelengths and machine settings, and they were compared to the predictions of a theoretical model. The measurements allowed a direct observation of the pulse lengthening and splitting at saturation, in agreement with the proposed theory.
  •  
7.
  • Iablonskyi, D., et al. (författare)
  • Interatomic Coulombic Decay Processes after Multiple Valence Excitations in Ne Clusters
  • 2015
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6596 .- 1742-6588. ; 635, s. 112067-112067
  • Konferensbidrag (refereegranskat)abstract
    • We present a comprehensive analysis of autoionization processes in Ne clusters (similar to 5000 atoms) after multiple valence excitations by free electron laser radiation. The evolution from 2-body interatomic Coulombic decay (ICD) to 3-body ICD is demonstrated when changing from surface to bulk Frenkel exciton excitation. Super Coster-Kronig type 2-body ICD is observed at Wannier exciton which quenches the main ICD channel.
  •  
8.
  • Makos, I., et al. (författare)
  • Attosecond photoelectron spectroscopy using high-harmonic generation and seeded free-electron lasers
  • 2023
  • Ingår i: 2023 Photonics North, PN 2023. - 9798350326734
  • Konferensbidrag (refereegranskat)abstract
    • In this work, we use attosecond time-resolved techniques to investigate photoionization dynamics on its natural timescale, employing both high harmonic generation and seeded free-electron lasers to generate extreme ultraviolet attosecond pulse trains for our studies. With the former approach, we examine the role of nuclear motion in molecular photoionization dynamics, while with the latter we introduce a novel attosecond timing tool for single-shot characterization of the relative phase between the XUV and the infrared field.
  •  
9.
  • Maroju, P. K., et al. (författare)
  • Analysis of two-color photoelectron spectroscopy for attosecond metrology at seeded free-electron lasers
  • 2021
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 23:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The generation of attosecond pulse trains at free-electron lasers opens new opportunities in ultrafast science, as it gives access, for the first time, to reproducible, programmable, extreme ultraviolet (XUV) waveforms with high intensity. In this work, we present a detailed analysis of the theoretical model underlying the temporal characterization of the attosecond pulse trains recently generated at the free-electron laser FERMI. In particular, the validity of the approximations used for the correlated analysis of the photoelectron spectra generated in the two-color photoionization experiments are thoroughly discussed. The ranges of validity of the assumptions, in connection with the main experimental parameters, are derived.
  •  
10.
  • Maroju, Praveen Kumar, et al. (författare)
  • Attosecond coherent control of electronic wave packets in two-colour photoionization using a novel timing tool for seeded free-electron laser
  • 2023
  • Ingår i: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 17, s. 200-207
  • Tidskriftsartikel (refereegranskat)abstract
    • In ultrafast spectroscopy, the temporal resolution of time-resolved experiments depends on the duration of the pump and probe pulses, and on the control and characterization of their relative synchronization. Free-electron lasers operating in the extreme ultraviolet and X-ray spectral regions deliver pulses with femtosecond and attosecond duration in a broad array of pump-probe configurations to study a wide range of physical processes. However, this flexibility, together with the large dimensions and high complexity of the experimental set-ups, limits control of the temporal delay to the femtosecond domain, thus precluding a time resolution below the optical cycle. Here we demonstrate a novel single-shot technique able to determine the relative synchronization between an attosecond pulse train-generated by a seeded free-electron laser-and the optical oscillations of a near-infrared field, with a resolution of one atomic unit (24 as). Using this attosecond timing tool, we report the first example of attosecond coherent control of photoionization in a two-colour field by manipulating the phase of high-order near-infrared transitions.
  •  
11.
  • Mirian, N. S., et al. (författare)
  • Generation and measurement of intense few-femtosecond superradiant extreme-ultraviolet free-electron laser pulses
  • 2021
  • Ingår i: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 15, s. 523-529
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-electron lasers producing ultrashort pulses with high peak power promise to extend ultrafast non-linear spectroscopic techniques into the extreme-ultraviolet-X-ray regime. Key aspects are the synchronization between pump and probe, and the control of the pulse properties (duration, intensity and coherence). Externally seeded free-electron lasers produce coherent pulses that can be synchronized with femtosecond accuracy. An important goal is to shorten the pulse duration, but the simple approach of shortening the seed is not sufficient because of the finite-gain bandwidth of the conversion process. An alternative is the amplification of a soliton in a multistage, superradiant cascade: here, we demonstrate the generation of few-femtosecond extreme-ultraviolet pulses, whose duration we measure by autocorrelation. We achieve pulses four times shorter, and with a higher peak power, than in the standard high-gain harmonic generation mode and we prove that the pulse duration matches the Fourier transform limit of the spectral intensity distribution. By amplifying a soliton in a multistage cascade, few-femtosecond extreme-ultraviolet free-electron laser pulses are achieved.
  •  
12.
  • Pop, Mihai, et al. (författare)
  • Single-shot transverse coherence in seeded and unseeded free-electron lasers: A comparison
  • 2022
  • Ingår i: Physical Review Accelerators and Beams. - 2469-9888. ; 25:040701
  • Tidskriftsartikel (refereegranskat)abstract
    • The advent of x-ray free-electron lasers (FELs) drastically enhanced the capabilities of several analytical techniques, for which the degree of transverse (spatial) coherence of the source is essential. FELs can be operated in self-amplified spontaneous emission (SASE) or seeded configurations, which rely on a qualitatively different initialization of the amplification process leading to light emission. The degree of transverse coherence of SASE and seeded FELs has been characterized in the past, both experimentally and theoretically. However, a direct experimental comparison between the two regimes in similar operating conditions is missing, as well as an accurate study of the sensitivity of transverse coherence to key working parameters. In this paper, we carry out such a comparison, focusing in particular on the evolution of coherence during the light amplification process.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • Finetti, P., et al. (författare)
  • Optical setup for two-colour experiments at the low density matter beamline of FERMI
  • 2017
  • Ingår i: Journal of optics. - : IOP Publishing. - 0150-536X .- 2040-8978 .- 2040-8986. ; 19:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The low density matter beamline of the free electron laser facility FERMI is dedicated to the study of atomic, molecular and cluster systems, and here we describe the optical setup available for two-colour experiments. Samples can be exposed to ultrashort pulses from a Ti:Sapphire source (fundamental, or second or third harmonic), and ultrashort light pulses of FERMI in the EUV/soft x-ray region with a well-defined temporal delay, and negligible jitter (<10 fs) compared to the pulse durations (40–100 fs). Detection schemes available include electron, ion and optical spectroscopy. The majority of experiments using this apparatus are pump-and-probe, where either wavelength can be pump or probe, but the system is also useful for other techniques, such as multi-photon spectroscopy, cross-correlation measurements and alignment of molecules in space.
  •  
17.
  • Fushitani, Mizuho, et al. (författare)
  • Time-resolved photoelectron imaging of complex resonances in molecular nitrogen
  • 2021
  • Ingår i: The Journal of chemical physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 154:14
  • Tidskriftsartikel (refereegranskat)abstract
    • We have used the FERMI free-electron laser to perform time-resolved photoelectron imaging experiments on a complex group of resonances near 15.38 eV in the absorption spectrum of molecular nitrogen, N2, under jet-cooled conditions. The new data complement and extend the earlier work of Fushitani et al. [Opt. Express 27, 19702–19711 (2019)], who recorded time-resolved photoelectron spectra for this same group of resonances. Time-dependent oscillations are observed in both the photoelectron yields and the photoelectron angular distributions, providing insight into the interactions among the resonant intermediate states. In addition, for most states, we observe an exponential decay of the photoelectron yield that depends on the ionic final state. This observation can be rationalized by the different lifetimes for the intermediate states contributing to a particular ionization channel. Although there are nine resonances within the group, we show that by detecting individual photoelectron final states and their angular dependence, we can identify and differentiate quantum pathways within this complex system.
  •  
18.
  • Kumar Maroju, Praveen, et al. (författare)
  • Attosecond pulse shaping using a seeded free-electron laser
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 578, s. 386-391
  • Tidskriftsartikel (refereegranskat)abstract
    • Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales. The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation. Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters, multilayer mirrors and manipulation of the driving field. However, none of these approaches allows the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free-electron lasers, by contrast, deliver femtosecond, extreme-ultraviolet and X-ray pulses with energies ranging from tens of microjoules to a few millijoules. Recent experiments have shown that they can generate subfemtosecond spikes, but with temporal characteristics that change shot-to-shot. Here we report reproducible generation of high-energy (microjoule level) attosecond waveforms using a seeded free-electron laser. We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with an approach for its temporal reconstruction. The results presented here open the way to performing attosecond time-resolved experiments with free-electron lasers.
  •  
19.
  • Maroju, Praveen K., et al. (författare)
  • A Novel Attosecond Timing Tool for Free-Electron Laser Experiment
  • 2020
  • Ingår i: High Intensity Lasers and High Field Phenomena 2020. - 9781943580736
  • Konferensbidrag (refereegranskat)abstract
    • We demonstrate a novel timing tool for Free-Electron Lasers to determine the delay between an attosecond pulse train and infrared pulse with sub-optical-cycle resolu-. tion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy