SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dejana Elisabetta) "

Sökning: WFRF:(Dejana Elisabetta)

  • Resultat 1-25 av 57
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Angiolini, Francesca, et al. (författare)
  • A novel L1CAM isoform with angiogenic activity generated by NOVA2-mediated alternative splicing
  • 2019
  • Ingår i: eLIFE. - 2050-084X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The biological players involved in angiogenesis are only partially defined. Here, we report that endothelial cells (ECs) express a novel isoform of the cell-surface adhesion molecule L1CAM, termed L1-ΔTM. The splicing factor NOVA2, which binds directly to L1CAM pre-mRNA, is necessary and sufficient for the skipping of L1CAM transmembrane domain in ECs, leading to the release of soluble L1-ΔTM. The latter exerts high angiogenic function through both autocrine and paracrine activities. Mechanistically, L1-ΔTM-induced angiogenesis requires fibroblast growth factor receptor-1 signaling, implying a crosstalk between the two molecules. NOVA2 and L1-ΔTM are overexpressed in the vasculature of ovarian cancer, where L1-ΔTM levels correlate with tumor vascularization, supporting the involvement of NOVA2-mediated L1-ΔTM production in tumor angiogenesis. Finally, high NOVA2 expression is associated with poor outcome in ovarian cancer patients. Our results point to L1-ΔTM as a novel, EC-derived angiogenic factor which may represent a target for innovative antiangiogenic therapies.
  •  
2.
  • Bravi, Luca, et al. (författare)
  • Endothelial Cells Lining Sporadic Cerebral Cavernous Malformation Cavernomas Undergo Endothelial-to-Mesenchymal Transition
  • 2016
  • Ingår i: Stroke. - 0039-2499 .- 1524-4628. ; 47:3, s. 886-890
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: Cerebral cavernous malformation (CCM) is characterized by multiple lumen vascular malformations in the central nervous system that can cause neurological symptoms and brain hemorrhages. About 20% of CCM patients have an inherited form of the disease with ubiquitous loss-of-function mutation in any one of 3 genes CCM1, CCM2, and CCM3. The rest of patients develop sporadic vascular lesions histologically similar to those of the inherited form and likely mediated by a biallelic acquired mutation of CCM genes in the brain vasculature. However, the molecular phenotypic features of endothelial cells in CCM lesions in sporadic patients are still poorly described. This information is crucial for a targeted therapy.METHODS: We used immunofluorescence microscopy and immunohistochemistry to analyze the expression of endothelial-to-mesenchymal transition markers in the cavernoma of sporadic CCM patients in parallel with human familial cavernoma as a reference control.RESULTS: We report here that endothelial cells, a cell type critically involved in CCM development, undergo endothelial-to-mesenchymal transition in the lesions of sporadic patients. This switch in endothelial phenotype has been described only in genetic CCM patients and in murine models of the disease. In addition, TGF-β/p-Smad- and β-catenin-dependent signaling pathways seem activated in sporadic cavernomas as in familial ones.CONCLUSIONS: Our findings support the use of common therapeutic strategies for both sporadic and genetic CCM malformations.
  •  
3.
  • Bravi, Luca, et al. (författare)
  • Sulindac metabolites decrease cerebrovascular malformations in CCM3-knockout mice
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:27, s. 8421-8426
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral cavernous malformation (CCM) is a disease of the central nervous system causing hemorrhage-prone multiple lumen vascular malformations and very severe neurological consequences. At present, the only recommended treatment of CCM is surgical. Because surgery is often not applicable, pharmacological treatment would be highly desirable. We describe here a murine model of the disease that develops after endothelial-cell-selective ablation of the CCM3 gene. We report an early, cell-autonomous, Wnt-receptor-independent stimulation of beta-catenin transcription activity in CCM3-deficient endothelial cells both in vitro and in vivo and a triggering of a beta-catenin-driven transcription program that leads to endothelial-tomesenchymal transition. TGF-beta/BMP signaling is then required for the progression of the disease. We also found that the anti-inflammatory drugs sulindac sulfide and sulindac sulfone, which attenuate beta-catenin transcription activity, reduce vascular malformations in endothelial CCM3-deficient mice. This study opens previously unidentified perspectives for an effective pharmacological therapy of intracranial vascular cavernomas.
  •  
4.
  • Castro, Marco, et al. (författare)
  • CDC42 deletion elicits cerebral vascular malformations via increased MEKK3-dependent KLF4 expression
  • 2019
  • Ingår i: Circulation Research. - 0009-7330 .- 1524-4571. ; 124:8, s. 1240-1252
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Aberrant formation of blood vessels precedes a broad spectrum of vascular complications; however, the cellular and molecular events governing vascular malformations are not yet fully understood. Objective: Here, we investigated the role of CDC42 (cell division cycle 42) during vascular morphogenesis and its relative importance for the development of cerebrovascular malformations. Methods and Results: To avoid secondary systemic effects often associated with embryonic gene deletion, we generated an endothelial-specific and inducible knockout approach to study postnatal vascularization of the mouse brain. Postnatal endothelial-specific deletion of Cdc42 elicits cerebrovascular malformations reminiscent of cerebral cavernous malformations (CCMs). At the cellular level, loss of CDC42 function in brain endothelial cells (ECs) impairs their sprouting, branching morphogenesis, axial polarity, and normal dispersion within the brain tissue. Disruption of CDC42 does not alter EC proliferation, but malformations occur where EC proliferation is the most pronounced during brain development-the postnatal cerebellum-indicating that a high, naturally occurring EC proliferation provides a permissive state for the appearance of these malformations. Mechanistically, CDC42 depletion in ECs elicited increased MEKK3 (mitogen-activated protein kinase kinase kinase 3)-MEK5 (mitogen-activated protein kinase kinase 5)-ERK5 (extracellular signal-regulated kinase 5) signaling and consequent detrimental overexpression of KLF (Kruppel-like factor) 2 and KLF4, recapitulating the hallmark mechanism for CCM pathogenesis. Through genetic approaches, we demonstrate that the coinactivation of Klf4 reduces the severity of vascular malformations in Cdc42 mutant mice. Moreover, we show that CDC42 interacts with CCMs and that CCM3 promotes CDC42 activity in ECs. Conclusions: We show that endothelial-specific deletion of Cdc42 elicits CCM-like cerebrovascular malformations and that CDC42 is engaged in the CCM signaling network to restrain the MEKK3-MEK5-ERK5-KLF2/4 pathway.
  •  
5.
  • Chiang, Ivy Kim-Ni, et al. (författare)
  • SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development
  • 2017
  • Ingår i: Development. - : COMPANY OF BIOLOGISTS LTD. - 0950-1991 .- 1477-9129. ; 144:14, s. 2629-2639
  • Tidskriftsartikel (refereegranskat)abstract
    • Arterial specification and differentiation are influenced by a number of regulatory pathways. While it is known that the Vegfa-Notch cascade plays a central role, the transcriptional hierarchy controlling arterial specification has not been fully delineated. To elucidate the direct transcriptional regulators of Notch receptor expression in arterial endothelial cells, we used histone signatures, DNaseI hypersensitivity and ChIP-seq data to identify enhancers for the human NOTCH1 and zebrafish notch1b genes. These enhancerswere able to direct arterial endothelial cell-restricted expression in transgenic models. Genetic disruption of SoxF binding sites established a clear requirement for members of this group of transcription factors (SOX7, SOX17 and SOX18) to drive the activity of these enhancers in vivo. Endogenous deletion of the notch1b enhancer led to a significant loss of arterial connections to the dorsal aorta in Notch pathway-deficient zebrafish. Loss of SoxF function revealed that these factors are necessary for NOTCH1 and notch1b enhancer activity and for correct endogenous transcription of these genes. These findings position SoxF transcription factors directly upstream of Notch receptor expression during the acquisition of arterial identity in vertebrates.
  •  
6.
  • Chohan, Muhammad O., et al. (författare)
  • Emerging Pharmacologic Targets in Cerebral Cavernous Malformation and Potential Strategies to Alter the Natural History of a Difficult Disease : A Review
  • 2019
  • Ingår i: JAMA Neurology. - : AMER MEDICAL ASSOC. - 2168-6149 .- 2168-6157. ; 76:4, s. 492-500
  • Forskningsöversikt (refereegranskat)abstract
    • IMPORTANCE: Cerebral cavernous malformations (CCMs) are vascular lesions of the brain that may lead to hemorrhage, seizures, and neurologic deficits. Most are linked to loss-of-function mutations in 1 of 3 genes, namely CCM1 (originally called KRIT1), CCM2 (MGC4607), or CCM3 (PDCD10), that can either occur as sporadic events or are inherited in an autosomal dominant pattern with incomplete penetrance. Familial forms originate from germline mutations, often have multiple intracranial lesions that grow in size and number over time, and cause an earlier and more severe presentation. Despite active preclinical research on a few pharmacologic agents, clinical translation has been slow. Open surgery and, in some cases, stereotactic radiosurgery remain the only effective treatments, but these options are limited by lesion accessibility and are associated with nonnegligible rates of morbidity and mortality.OBSERVATIONS: We discuss the limits of CCM management and introduce findings from in vitro and in vivo studies that provide insight into CCM pathogenesis and indicate molecular mechanisms as potential therapeutic targets. These studies report dysregulated cellular pathways shared between CCM, cardiovascular diseases, and cancer. They also suggest the potential effectiveness of proper drug repurposing in association with, or as an alternative to, targeted interventions.CONCLUSIONS AND RELEVANCE: We propose methods to exploit specific molecular pathways to design patient-tailored therapeutic approaches in CCM, with the aim to alter its natural progression. In this scenario, the lack of effective pharmacologic options remains a critical barrier that poses an unfulfilled and urgent medical need.
  •  
7.
  • Claesson-Welsh, Lena, et al. (författare)
  • Permeability of the Endothelial Barrier : Identifying and Reconciling Controversies
  • 2021
  • Ingår i: Trends in Molecular Medicine. - : Elsevier. - 1471-4914 .- 1471-499X. ; 27:4, s. 314-331
  • Forskningsöversikt (refereegranskat)abstract
    • Leakage from blood vessels into tissues is governed by mechanisms that control endothelial barrier function to maintain homeostasis. Dysregulated endothelial permeability contributes to many conditions and can influence disease morbidity and treatment. Diverse approaches used to study endothelial permeability have yielded a wealth of valuable insights. Yet, ongoing questions, technical challenges, and unresolved controversies relating to the mechanisms and relative contributions of barrier regulation, transendothelial sieving, and transport of fluid, solutes, and particulates complicate interpretations in the context of vascular physiology and pathophysiology. Here, we describe recent in vivo findings and other advances in understanding endothelial barrier function with the goal of identifying and reconciling controversies over cellular and molecular processes that regulate the vascular barrier in health and disease.
  •  
8.
  • Corada, Monica, et al. (författare)
  • Fine-Tuning of Sox17 and Canonical Wnt Coordinates the Permeability Properties of the Blood-Brain Barrier
  • 2019
  • Ingår i: Circulation Research. - 0009-7330 .- 1524-4571. ; 124:4, s. 511-525
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: The microvasculature of the central nervous system includes the blood-brain barrier (BBB), which regulates the permeability to nutrients and restricts the passage of toxic agents and inflammatory cells. Canonical Wnt/β-catenin signaling is responsible for the early phases of brain vascularization and BBB differentiation. However, this signal declines after birth, and other signaling pathways able to maintain barrier integrity at postnatal stage are still unknown.Objective: Sox17 (SRY [sex-determining region Y]-box 17) constitutes a major downstream target of Wnt/β-catenin in endothelial cells and regulates arterial differentiation. In the present article, we asked whether Sox17 may act downstream of Wnt/β-catenin in inducing BBB differentiation and maintenance.Methods and Results: Using reporter mice and nuclear staining of Sox17 and β-catenin, we report that although β-catenin signaling declines after birth, Sox17 activation increases and remains high in the adult. Endothelial-specific inactivation of Sox17 leads to increase of permeability of the brain microcirculation. The severity of this effect depends on the degree of BBB maturation: it is strong in the embryo and progressively declines after birth. In search of Sox17 mechanism of action, RNA sequencing analysis of gene expression of brain endothelial cells has identified members of the Wnt/β-catenin signaling pathway as downstream targets of Sox17. Consistently, we found that Sox17 is a positive inducer of Wnt/β-catenin signaling, and it acts in concert with this pathway to induce and maintain BBB properties. In vivo, inhibition of the β-catenin destruction complex or expression of a degradation-resistant β-catenin mutant, prevent the increase in permeability and retina vascular malformations observed in the absence of Sox17.Conclusions: Our data highlight a novel role for Sox17 in the induction and maintenance of the BBB, and they underline the strict reciprocal tuning of this transcription factor and Wnt/β-catenin pathway. Modulation of Sox17 activity may be relevant to control BBB permeability in pathological conditions.
  •  
9.
  • Cottarelli, Azzurra, et al. (författare)
  • Fgfbp1 promotes blood-brain barrier development by regulating collagen IV deposition and maintaining Wnt/beta-catenin signaling
  • 2020
  • Ingår i: Development. - : COMPANY BIOLOGISTS LTD. - 0950-1991 .- 1477-9129. ; 147:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Central nervous system (CNS) blood vessels contain a functional blood-brain barrier (BBB) that is necessary for neuronal survival and activity. Although Wnt/beta-catenin signaling is essential for BBB development, its downstream targets within the neurovasculature remain poorly understood. To identify targets of Wnt/beta-catenin signaling underlying BBB maturation, we performed a microarray analysis that identified Fgfbp1 as a novel Wnt/beta-catenin-regulated gene in mouse brain endothelial cells (mBECs). Fgfbp1 is expressed in the CNS endothelium and secreted into the vascular basement membrane during BBB formation. Endothelial genetic ablation of Fgfbp1 results in transient hypervascularization but delays BBB maturation in specific CNSregions, as evidenced by both upregulation of Plvap and increased tracer leakage across the neurovasculature due to reduced Wnt/beta-catenin activity. In addition, collagen IV deposition in the vascular basement membrane is reduced in mutant mice, leading to defective endothelial cell-pericyte interactions. Fgfbp1 is required cell-autonomously in mBECs to concentrate Wnt ligands near cell junctions and promote maturation of their barrier properties in vitro. Thus, Fgfbp1 is a crucial extracellular matrix protein during BBB maturation that regulates cell-cell interactions and Wnt/beta-catenin activity.
  •  
10.
  • Cruys, Bert, et al. (författare)
  • Glycolytic regulation of cell rearrangement in angiogenesis
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • During vessel sprouting, endothelial cells (ECs) dynamically rearrange positions in the sprout to compete for the tip position. We recently identified a key role for the glycolytic activator PFKFB3 in vessel sprouting by regulating cytoskeleton remodelling, migration and tip cell competitiveness. It is, however, unknown how glycolysis regulates EC rearrangement during vessel sprouting. Here we report that computational simulations, validated by experimentation, predict that glycolytic production of ATP drives EC rearrangement by promoting filopodia formation and reducing intercellular adhesion. Notably, the simulations correctly predicted that blocking PFKFB3 normalizes the disturbed EC rearrangement in high VEGF conditions, as occurs during pathological angiogenesis. This interdisciplinary study integrates EC metabolism in vessel sprouting, yielding mechanistic insight in the control of vessel sprouting by glycolysis, and suggesting anti-glycolytic therapy for vessel normalization in cancer and non-malignant diseases.
  •  
11.
  • Cunha, Sara I., et al. (författare)
  • Deregulated TGF-beta/BMP Signaling in Vascular Malformations
  • 2017
  • Ingår i: Circulation Research. - 0009-7330 .- 1524-4571. ; 121:8, s. 981-999
  • Forskningsöversikt (refereegranskat)abstract
    • Correct organization of the vascular tree requires the balanced activities of several signaling pathways that regulate tubulogenesis and vascular branching, elongation, and pruning. When this balance is lost, the vessels can be malformed and fragile, and they can lose arteriovenous differentiation. In this review, we concentrate on the transforming growth factor (TGF)-beta/bone morphogenetic protein (BMP) pathway, which is one of the most important and complex signaling systems in vascular development. Inactivation of these pathways can lead to altered vascular organization in the embryo. In addition, many vascular malformations are related to deregulation of TGF-beta/BMP signaling. Here, we focus on two of the most studied vascular malformations that are induced by deregulation of TGF-beta/BMP signaling: hereditary hemorrhagic telangiectasia (HHT) and cerebral cavernous malformation (CCM). The first of these is related to loss-of-function mutation of the TGF-beta/BMP receptor complex and the second to increased signaling sensitivity to TGF-beta/BMP. In this review, we discuss the potential therapeutic targets against these vascular malformations identified so far, as well as their basis in general mechanisms of vascular development and stability.
  •  
12.
  • Cuttano, Roberto, et al. (författare)
  • KLF4 is a key determinant in the development and progression of cerebral cavernous malformations
  • 2016
  • Ingår i: EMBO Molecular Medicine. - : EMBO. - 1757-4676 .- 1757-4684. ; 8:1, s. 6-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral cavernous malformations (CCMs) are vascular malformations located within the central nervous system often resulting in cerebral hemorrhage. Pharmacological treatment is needed, since current therapy is limited to neurosurgery. Familial CCM is caused by loss-of-function mutations in any of Ccm1, Ccm2, and Ccm3 genes. CCM cavernomas are lined by endothelial cells (ECs) undergoing endothelial-to-mesenchymal transition (EndMT). This switch in phenotype is due to the activation of the transforming growth factor beta/bone morphogenetic protein (TGFb/BMP) signaling. However, the mechanism linking Ccm gene inactivation and TGFb/ BMP-dependent EndMT remains undefined. Here, we report that Ccm1 ablation leads to the activation of a MEKK3-MEK5-ERK5MEF2 signaling axis that induces a strong increase in Kruppel-like factor 4 (KLF4) in ECs in vivo. KLF4 transcriptional activity is responsible for the EndMT occurring in CCM1-null ECs. KLF4 promotes TGFb/BMP signaling through the production of BMP6. Importantly, in endothelial-specific Ccm1 and Klf4 double knockout mice, we observe a strong reduction in the development of CCM and mouse mortality. Our data unveil KLF4 as a therapeutic target for CCM.
  •  
13.
  • Dejana, Elisabetta, et al. (författare)
  • Endothelial cell transitions
  • 2018
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 362:6416, s. 746-747
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Are endothelial-to-mesenchymal transitions in various vascular pathologies a consequence, cause, or defense?
  •  
14.
  • Dejana, Elisabetta, et al. (författare)
  • The molecular basis of endothelial cell plasticity
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Forskningsöversikt (refereegranskat)abstract
    • The endothelium is capable of remarkable plasticity. In the embryo, primitive endothelial cells differentiate to acquire arterial, venous or lymphatic fates. Certain endothelial cells also undergo hematopoietic transition giving rise to multi-lineage hematopoietic stem and progenitors while others acquire mesenchymal properties necessary for heart development. In the adult, maintenance of differentiated endothelial state is an active process requiring constant signalling input. The failure to do so leads to the development of endothelial-to-mesenchymal transition that plays an important role in pathogenesis of a number of diseases. A better understanding of these phenotypic changes may lead to development of new therapeutic interventions.
  •  
15.
  • Erba, Benedetta Gaia, et al. (författare)
  • Endothelial-to-Mesenchymal Transition in Bone Marrow and Spleen of Primary Myelofibrosis
  • 2017
  • Ingår i: American Journal of Pathology. - : Elsevier BV. - 0002-9440 .- 1525-2191. ; 187:8, s. 1879-1892
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary myelofibrosis is characterized by the development of fibrosis in the bone marrow that contributes to ineffective hematopoiesis. Bone marrow fibrosis is the result of a complex and not yet fully understood interaction among megakaryocytes, myeloid cells, fibroblasts, and endothelial cells. Here, we report that >30% of the endothelial cells in the small vessels of the bone marrow and spleen of patients with primary myelofibrosis have a mesenchymal phenotype, which is suggestive of the process known as endothelial-to-mesenchymal transition (EndMT). EndMT can be reproduced in vitro by incubation of cultured endothelial progenitor cells or spleen-derived endothelial cells with inflammatory cytokines. Megakaryocytes appear to be implicated in this process, because EndMT mainly occurs in the microvessels close to these cells, and because megakaryocyte-derived supernatant fluid can reproduce the EndMT switch in vitro. Furthermore, EndMT is an early event in a JAK2-V617F knock-in mouse model of primary myelofibrosis. Overall, these data show for the first time that microvascular endothelial cells in the bone marrow and spleen of patients with primary myelofibrosis show functional and morphologic changes that are associated to the mesenchymal phenotype.
  •  
16.
  • Gertz, Karen, et al. (författare)
  • Partial loss of VE-cadherin improves long-term outcome and cerebral blood flow after transient brain ischemia in mice
  • 2016
  • Ingår i: BMC Neurology. - : Springer Science and Business Media LLC. - 1471-2377. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: VE-cadherin is the chief constituent of endothelial adherens junctions. However, the role of VE-cadherin in the pathogenesis of cerebrovascular diseases including brain ischemia has not yet been investigated. Methods: VE-cadherin heterozygous (VEC+/-) mice and wildtype controls were subjected to transient brain ischemia by 30 min filamentous middle cerebral artery occlusion (MCAo)/reperfusion. Results: Acute lesion sizes as assessed by MR-imaging on day 3 did not differ between genotypes. Unexpectedly, however, partial loss of VE-cadherin resulted in long-term stroke protection measured histologically on day 28. Equally surprisingly, VEC+/- mice displayed no differences in post-stroke angiogenesis compared to littermate controls, but showed increased absolute regional cerebral blood flow in ischemic striatum at four weeks. The early induction of VE-cadherin mRNA transcription after stroke was reduced in VEC+/- mice. By contrast, N-cadherin and beta-catenin mRNA expression showed a delayed, but sustained, upregulation up to 28 days after MCAo, which was increased in VEC+/ mice. Furthermore, partial loss of VE-cadherin resulted in a pattern of elevated ischemia-triggered mRNA transcription of pericyte-related molecules alpha-smooth muscle actin (alpha-SMA), aminopeptidase N (CD13), and platelet-derived growth factor receptor beta (PDGFR-beta). Conclusions: Partial loss of VE-cadherin results in long term stroke protection. On the cellular and molecular level, this effect appears to be mediated by improved endothelial/pericyte interactions and the resultant increase in cerebral blood flow. Our study reinforces accumulating evidence that long-term stroke outcome depends critically on vascular mechanisms.
  •  
17.
  • Giampietro, Costanza, et al. (författare)
  • The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling
  • 2015
  • Ingår i: Journal of Cell Biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 211:6, s. 1177-1192
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular endothelial (VE)-cadherin transfers intracellular signals contributing to vascular hemostasis. Signaling through VE-cadherin requires association and activity of different intracellular partners. Yes-associated protein (YAP)/TAZ transcriptional cofactors are important regulators of cell growth and organ size. We show that EPS8, a signaling adapter regulating actin dynamics, is a novel partner of VE-cadherin and is able to modulate YAP activity. By biochemical and imaging approaches, we demonstrate that EPS8 associates with the VE-cadherin complex of remodeling junctions promoting YAP translocation to the nucleus and transcriptional activation. Conversely, in stabilized junctions, 14-3-3-YAP associates with the VE-cadherin complex, whereas Eps8 is excluded. Junctional association of YAP inhibits nuclear translocation and inactivates its transcriptional activity both in vitro and in vivo in Eps8-null mice. The absence of Eps8 also increases vascular permeability in vivo, but did not induce other major vascular defects. Collectively, we identified novel components of the adherens junction complex, and we introduce a novel molecular mechanism through which the VE-cadherin complex controls YAP transcriptional activity.
  •  
18.
  • Giampietro, C, et al. (författare)
  • The alternative splicing factor Nova2 regulates vascular development and lumen formation
  • 2015
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6, s. 8479-
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular lumen formation is a fundamental step during angiogenesis; yet, the molecular mechanisms underlying this process are poorly understood. Recent studies have shown that neural and vascular systems share common anatomical, functional and molecular similarities. Here we show that the organization of endothelial lumen is controlled at the post-transcriptional level by the alternative splicing (AS) regulator Nova2, which was previously considered to be neural cell-specific. Nova2 is expressed during angiogenesis and its depletion disrupts vascular lumen formation in vivo. Similarly, Nova2 depletion in cultured endothelial cells (ECs) impairs the apical distribution and the downstream signalling of the Par polarity complex, resulting in altered EC polarity, a process required for vascular lumen formation. These defects are linked to AS changes of Nova2 target exons affecting the Par complex and its regulators. Collectively, our results reveal that Nova2 functions as an AS regulator in angiogenesis and is a novel member of the ‘angioneurins’ family.
  •  
19.
  •  
20.
  • Globisch, Maria A., et al. (författare)
  • Immunothrombosis and vascular heterogeneity in cerebral cavernous malformation
  • 2022
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 140:20, s. 2154-2169
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral cavernous malformation (CCM) is a neurovascular disease that results in various neurological symptoms. Thrombi have been reported in surgically resected CCM patient biopsies, but the molecular signatures of these thrombi remain elusive. Here, we investigated the kinetics of thrombi formation in CCM and how thrombi affect the vasculature and contribute to cerebral hypoxia. We used RNA sequencing to investigate the transcriptome of mouse brain endothelial cells with an inducible endothelial-specific Ccm3 knock-out (Ccm3-iECKO). We found that Ccm3-deficient brain endothelial cells had a higher expression of genes related to the coagulation cascade and hypoxia when compared with wild-type brain endothelial cells. Immunofluorescent assays identified key molecular signatures of thrombi such as fibrin, von Willebrand factor, and activated platelets in Ccm3-iECKO mice and human CCM biopsies. Notably, we identified polyhedrocytes in Ccm3-iECKO mice and human CCM biopsies and report it for the first time. We also found that the parenchyma surrounding CCM lesions is hypoxic and that more thrombi correlate with higher levels of hypoxia. We created an in vitro model to study CCM pathology and found that human brain endothelial cells deficient for CCM3 expressed elevated levels of plasminogen activator inhibitor-1 and had a redistribution of von Willebrand factor. With transcriptomics, comprehensive imaging, and an in vitro CCM preclinical model, this study provides experimental evidence that genes and proteins related to the coagulation cascade affect the brain vasculature and promote neurological side effects such as hypoxia in CCMs. This study supports the concept that antithrombotic therapy may be beneficial for patients with CCM.
  •  
21.
  • Globisch, Maria Ascención (författare)
  • Inflammation and immunothrombosis in cerebral cavernous malformation : Novel molecular targets for the treatment of an incurable disease
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cerebral cavernous malformation (CCM) is a vascular disease that causes mulberry-like lesions (cavernomas) in the central nervous system (CNS). Cavernomas are fragile, leaky and prone to rupture which may cause symptoms such as epileptic seizures, focal neurological deficits and hemorrhagic strokes. CCM lesions can appear sporadically in 0.5% of the general population. Alternatively, CCM lesions appear as a consequence of a loss-of-function germline mutation in either CCM1, CCM2, or CCM3 in endothelial cells of the CNS. Inherited CCM is termed familial, and it affects approximately one in ten thousand individuals in an autosomal dominant manner. The aim of this thesis project is to identify novel cell and molecular mechanisms that contribute to the development and progression of cavernous malformations. Additionally, this thesis project aims to identify and validate inhibitors that may reduce lesions and alleviate the side effects in CCM. In this thesis project, two inducible endothelial specific Ccm3 deficient mouse models (acute and chronic) were evaluated with methods such as RNA-sequencing, immunofluorescence, ELISA, scanning and transmission electron microscopy, flow cytometry, and in situ hybridization. Moreover, in vitro cell cultures were used with methods such as immunofluorescence, qPCR, and western blot. Importantly, sporadic and familial human CCM samples were used to show the clinical relevance of our studies. In paper I we focused on the role and kinetics of inflammation in CCM. We analyzed the transcriptome of healthy and Ccm3 deficient mouse brain endothelial cells and found that genes related to inflammation were upregulated in CCM pathology. We identified various inflammatory cytokines in vivo and also identified neutrophils as the most prominent immune cell subtype in CCM. Moreover, we found that neutrophils in CCM produce neutrophil extracellular traps (NETs), that can be inhibited with DNase I. The inhibition of NETs stabilized cavernoma vasculature by reducing fibrinogen and IgG leakage. In paper II we re-used the acute RNA-seq database from paper 1 and focused on endothelial hemostasis and hypoxia. We found that genes related to procoagulation, anticoagulation, and hypoxia were highly upregulated in Ccm3 deficient mice. We validated the findings in vivo and found that the hemostatic system in CCM is dysregulated and that it causes, bleeding, thrombosis, and cerebral hypoxia. In paper III we evaluated the effect of propranolol in CCM. We treated chronic CCM mice with the beta-blocker propranolol and found that propranolol was able to reduce lesions in the brains and retinas of CCM mice as well as reduce cadaverine leakage. Importantly, we identified endothelial plasmalemmal pits and a thick basal membrane between endothelial cells and pericytes, pathological features which reduced upon propranolol treatment. Altogether this thesis significantly contributes to the CCM field as it identified pathological features of cavernomas such as neutrophils with NETs, endothelial plasmalemmal pits, and polyhedrocytes. This thesis work also evaluated pharmacological inhibitors (DNase I and propranolol) in mouse models of CCM and supports the use of anticoagulant therapies in patients with CCM.
  •  
22.
  • Gordon, Emma J., et al. (författare)
  • The endothelial adaptor molecule TSAd is required for VEGF-induced angiogenic sprouting through junctional c-Src activation
  • 2016
  • Ingår i: Science Signaling. - : American Association for the Advancement of Science (AAAS). - 1945-0877 .- 1937-9145. ; 9:437
  • Tidskriftsartikel (refereegranskat)abstract
    • Activation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) by VEGF binding is critical for vascular morphogenesis. In addition, VEGF disrupts the endothelial barrier by triggering the phosphorylation and turnover of the junctional molecule VE-cadherin, a process mediated by the VEGFR2 downstream effectors T cell-specific adaptor (TSAd) and the tyrosine kinase c-Src. We investigated whether the VEGFR2-TSAd-c-Src pathway was required for angiogenic sprouting. Indeed, Tsad-deficient embryoid bodies failed to sprout in response to VEGF. Tsad-deficient mice displayed impaired angiogenesis specifically during tracheal vessel development, but not during retinal vasculogenesis, and in VEGF-loaded Matrigel plugs, but not in those loaded with FGF. The SH2 and proline-rich domains of TSAd bridged VEGFR2 and c-Src, and this bridging was critical for the localization of activated c-Src to endothelial junctions and elongation of the growing sprout, but not for selection of the tip cell. These results revealed that vascular sprouting and permeability are both controlled through the VEGFR2-TSAd-c-Src signaling pathway in a subset of tissues, which may be useful in developing strategies to control tissue-specific pathological angiogenesis.
  •  
23.
  • Hayashi, Makoto, et al. (författare)
  • VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation
  • 2013
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 4, s. 1672-
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular endothelial growth factor (VEGF) guides the path of new vessel sprouts by inducing VEGF receptor-2 activity in the sprout tip. In the stalk cells of the sprout, VEGF receptor-2 activity is downregulated. Here, we show that VEGF receptor-2 in stalk cells is dephosphorylated by the endothelium-specific vascular endothelial-phosphotyrosine phosphatase (VE-PTP). VE-PTP acts on VEGF receptor-2 located in endothelial junctions indirectly, via the Angiopoietin-1 receptor Tie2. VE-PTP inactivation in mouse embryoid bodies leads to excess VEGF receptor-2 activity in stalk cells, increased tyrosine phosphorylation of VE-cadherin and loss of cell polarity and lumen formation. Vessels in ve-ptp(-/-) teratomas also show increased VEGF receptor-2 activity and loss of endothelial polarization. Moreover, the zebrafish VE-PTP orthologue ptp-rb is essential for polarization and lumen formation in intersomitic vessels. We conclude that the role of Tie2 in maintenance of vascular quiescence involves VE-PTP-dependent dephosphorylation of VEGF receptor-2, and that VEGF receptor-2 activity regulates VE-cadherin tyrosine phosphorylation, endothelial cell polarity and lumen formation.
  •  
24.
  • Hirschi, Karen K., et al. (författare)
  • Resident Endothelial Progenitors Make Themselves at Home
  • 2018
  • Ingår i: Cell Stem Cell. - : CELL PRESS. - 1934-5909 .- 1875-9777. ; 23:2, s. 153-155
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Vascular endothelial cells adapt to their microenvironment and physiological demands to perform many essential functions. Recent studies (McDonald et al., 2018; Wakabayashi et al., 2018) suggest that quiescent endothelial stem/progenitor cells reside within blood vessels and are activated in response to injury, suggesting they can be harnessed for therapeutic applications.
  •  
25.
  • Huang, Hua, 1986-, et al. (författare)
  • ELTD1-deletion reduces vascular abnormality and improves T-cell recruitment after PD-1 blockade in glioma.
  • 2021
  • Ingår i: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 24:3, s. 398-411
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Tumor vessels in glioma are molecularly and functionally abnormal, contributing to treatment resistance. Proteins differentially expressed in glioma vessels can change vessel phenotype and be targeted for therapy. ELTD1 (Adgrl4) is an orphan member of the adhesion G-protein-coupled receptor family upregulated in glioma vessels, and has been suggested as a potential therapeutic target. However, the role of ELTD1 in regulating vessel function in glioblastoma is poorly understood.METHODS: ELTD1 expression in human gliomas and its association with patient survival was determined using tissue microarrays and public databases. The role of ELTD1 in regulating tumor vessel phenotype was analyzed using orthotopic glioma models and ELTD1 -/- mice. Endothelial cells isolated from murine gliomas were transcriptionally profiled to determine differentially expressed genes and pathways. The consequence of ELTD1-deletion on glioma immunity was determined by treating tumor bearing mice with PD-1-blocking antibodies.RESULTS: ELTD1 levels were upregulated in human glioma vessels, increased with tumor malignancy, and were associated with poor patient survival. Progression of orthotopic gliomas was not affected by ELTD1-deletion, however, tumor vascular function was improved in ELTD1 -/- mice. Bioinformatic analysis of differentially expressed genes indicated increased inflammatory response and decreased proliferation in tumor endothelium in ELTD1 -/- mice. Consistent with an enhanced inflammatory response, ELTD1-deletion improved T-cell infiltration in GL261-bearing mice after PD-1 checkpoint blockade.CONCLUSION: Our data demonstrate that ELTD1 participates in inducing vascular dysfunction in glioma, and suggests that targeting of ELTD1 may normalize the vessels and improve the response to immunotherapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 57
Typ av publikation
tidskriftsartikel (46)
forskningsöversikt (6)
annan publikation (3)
doktorsavhandling (2)
Typ av innehåll
refereegranskat (50)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Dejana, Elisabetta (55)
Corada, Monica (18)
Malinverno, Matteo (16)
Lampugnani, Maria Gr ... (15)
Claesson-Welsh, Lena (11)
Magnusson, Peetra (8)
visa fler...
Giampietro, Costanza (8)
Orsenigo, Fabrizio (8)
Dimberg, Anna (7)
Pisati, Federica (6)
Conze, Lei Liu (6)
Globisch, Maria A. (6)
Rudini, Noemi (5)
Lugano, Roberta (4)
Beznoussenko, Galina ... (4)
Vestweber, Dietmar (4)
Huang, Hua, 1986- (4)
Bravi, Luca (4)
Gordon, Emma (4)
Mironov, Alexander A ... (4)
Betsholtz, Christer (3)
Lupia, Michela (3)
Cavallaro, Ugo (3)
Magnusson, Peetra U. (3)
Bentley, Katie (3)
Cuttano, Roberto (3)
Adams, Ralf H. (3)
Cunha, Sara I. (3)
Kvanta, Anders (2)
Pontén, Fredrik (2)
Bergqvist, Michael (2)
Olsson, Anna-Karin (2)
Andre, Helder (2)
He, Liqun (2)
Daniel, Geoffrey (2)
Fernando, Dinesh (2)
Smits, Anja (2)
Nyqvist, Daniel (2)
Arce, Maximiliano (2)
Barbera, Stefano (2)
Orlandini, Maurizio (2)
Lazzaroni, Francesca (2)
Li, Xiujuan (2)
Maddaluno, Luigi (2)
Ferrarini, Luca (2)
Laviña, Bàrbara (2)
Abu Taha, Abdallah (2)
Herre, Melanie (2)
Rorsman, Charlotte (2)
Hirschi, Karen K. (2)
visa färre...
Lärosäte
Uppsala universitet (57)
Karolinska Institutet (8)
Göteborgs universitet (3)
Sveriges Lantbruksuniversitet (2)
Umeå universitet (1)
Lunds universitet (1)
visa fler...
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (57)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (46)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy