SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Delorenzi Mauro) "

Sökning: WFRF:(Delorenzi Mauro)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bernier-Latmani, Jeremiah, et al. (författare)
  • ADAMTS18+ villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels
  • 2022
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The small intestinal villus tip is the first point of contact for lumen-derived substances including nutrients and microbial products. Electron microscopy studies from the early 1970s uncovered unusual spatial organization of small intestinal villus tip blood vessels: their exterior, epithelial-facing side is fenestrated, while the side facing the villus stroma is non-fenestrated, covered by pericytes and harbors endothelial nuclei. Such organization optimizes the absorption process, however the molecular mechanisms maintaining this highly specialized structure remain unclear. Here we report that perivascular LGR5(+) villus tip telocytes (VTTs) are necessary for maintenance of villus tip endothelial cell polarization and fenestration by sequestering VEGFA signaling. Mechanistically, unique VTT expression of the protease ADAMTS18 is necessary for VEGFA signaling sequestration through limiting fibronectin accumulation. Therefore, we propose a model in which LGR5(+) ADAMTS18(+) telocytes are necessary to maintain a "just-right" level and location of VEGFA signaling in intestinal villus blood vasculature to ensure on one hand the presence of sufficient endothelial fenestrae, while avoiding excessive leakiness of the vessels and destabilization of villus tip epithelial structures. The molecular mechanisms ensuring the specialized structure of small intestinal villus tip blood vessels are incompletely understood. Here the authors show that ADAMTS18(+) telocytes maintain a "just-right" level and location of VEGFA signaling on intestinal villus blood vessels, thereby ensuring the presence of endothelial fenestrae for nutrient absorption, while avoiding excessive leakiness and destabilization of villus tip epithelial structures.
  •  
2.
  • Moor, Andreas E., et al. (författare)
  • BCL9/9L-β-catenin Signaling is Associated With Poor Outcome in Colorectal Cancer
  • 2015
  • Ingår i: EBioMedicine. - Ipswich, United States : EBSCO Publishing. - 2352-3964. ; 2:12, s. 1932-1943
  • Tidskriftsartikel (refereegranskat)abstract
    • BCL9/9L proteins enhance the transcriptional output of the β-catenin/TCF transcriptional complex and contribute critically to upholding the high WNT signaling level required for stemness maintenance in the intestinal epithelium. Here we show that a BCL9/9L-dependent gene signature derived from independent mouse colorectal cancer (CRC) models unprecedentedly separates patient subgroups with regard to progression free and overall survival. We found that this effect was by and large attributable to stemness related gene sets. Remarkably, this signature proved associated with recently described poor prognosis CRC subtypes exhibiting high stemness and/or epithelial-to-mesenchymal transition (EMT) traits. Consistent with the notion that high WNT signaling is required for stemness maintenance, ablating Bcl9/9l-β-catenin in murine oncogenic intestinal organoids provoked their differentiation and completely abrogated their tumorigenicity, while not affecting their proliferation. Therapeutic strategies aimed at targeting WNT responses may be limited by intestinal toxicity. Our findings suggest that attenuating WNT signaling to an extent that affects stemness maintenance without disturbing intestinal renewal might be well tolerated and prove sufficient to reduce CRC recurrence and dramatically improve disease outcome.
  •  
3.
  • Sabine, Amelie, et al. (författare)
  • FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature
  • 2015
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 125:10, s. 3861-3877
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease.
  •  
4.
  • Schaffenrath, Johanna, et al. (författare)
  • Blood-brain barrier alterations in human brain tumors revealed by genome-wide transcriptomic profiling
  • 2021
  • Ingår i: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 23:12, s. 2095-2106
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Brain tumors, whether primary or secondary, have limited therapeutic options despite advances in understanding driver gene mutations and heterogeneity within tumor cells. The cellular and molecular composition of brain tumor stroma, an important modifier of tumor growth, has been less investigated to date. Only few studies have focused on the vasculature of human brain tumors despite the fact that the blood-brain barrier (BBB) represents the major obstacle for efficient drug delivery. Methods. In this study, we employed RNA sequencing to characterize transcriptional alterations of endothelial cells (EC) isolated from primary and secondary human brain tumors. We used an immunoprecipitation approach to enrich for EC from normal brain, glioblastoma (GBM), and lung cancer brain metastasis (BM). Results. Analysis of the endothelial transcriptome showed deregulation of genes implicated in cell proliferation, angiogenesis, and deposition of extracellular matrix (ECM) in the vasculature of GBM and BM. Deregulation of genes defining the BBB dysfunction module was found in both tumor types. We identified deregulated expression of genes in vessel-associated fibroblasts in GBM. Conclusion. We characterize alterations in BBB genes in GBM and BM vasculature and identify proteins that might be exploited for developing drug delivery platforms. In addition, our analysis on vessel-associated fibroblasts in GBM shows that the cellular composition of brain tumor stroma merits further investigation.
  •  
5.
  •  
6.
  • Wirapati, Pratyaksha, et al. (författare)
  • Detecting Epistasis with Restricted Response Patterns in Pairs of Biallelic Loci
  • 2011
  • Ingår i: Annals of Human Genetics. - : Wiley. - 0003-4800 .- 1469-1809. ; 75:1, s. 133-145
  • Tidskriftsartikel (refereegranskat)abstract
    • P>Well-established examples of genetic epistasis between a pair of loci typically show characteristic patterns of phenotypic distributions in joint genotype tables. However, inferring epistasis given such data is difficult due to the lack of power in commonly used approaches, which decompose the epistatic patterns into main plus interaction effects followed by testing the interaction term. Testing additive-only or all terms may have more power, but they are sensitive to nonepistatic patterns. Alternatively, the epistatic patterns of interest can be enumerated and the best matching one is found by searching through the possibilities. Although this approach requires multiple testing correction over possible patterns, each pattern can be fitted with a regression model with just one degree of freedom and thus the overall power can still be high, if the number of possible patterns is limited. Here we compare the power of the linear decomposition and pattern search methods, by applying them to simulated data generated under several patterns of joint genotype effects with simple biological interpretations. Interaction-only tests are the least powerful; while pattern search approach is the most powerful if the range of possibilities is restricted, but still includes the true pattern.
  •  
7.
  • Zarb, Yvette, et al. (författare)
  • Microglia control small vessel calcification via TREM2
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 7:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Microglia participate in central nervous system (CNS) development and homeostasis and are often implicated in modulating disease processes. However, less is known about the role of microglia in the biology of the neurovascular unit (NVU). In particular, data are scant on whether microglia are involved in CNS vascular pathology. In this study, we use a mouse model of primary familial brain calcification, Pdgfb(ret/ret), to investigate the role of microglia in calcification of the NVU. We report that microglia enclosing vessel calcifications, coined calcification-associated microglia, display a distinct activation phenotype. Pharmacological ablation of microglia with the CSF1R inhibitor PLX5622 leads to aggravated vessel calcification. Mechanistically, we show that microglia require functional TREM2 for controlling vascular calcification. Our results demonstrate that microglial activity in the setting of pathological vascular calcification is beneficial. In addition, we identify a previously unrecognized function of microglia in halting the expansion of vascular calcification.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy