SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Desroses M) "

Search: WFRF:(Desroses M)

  • Result 1-14 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Bonagas, Nadilly, et al. (author)
  • Pharmacological targeting of MTHFD2 suppresses acute myeloid leukemia by inducing thymidine depletion and replication stress
  • 2022
  • In: NATURE CANCER. - : Springer Science and Business Media LLC. - 2662-1347. ; 3:2, s. 156-
  • Journal article (peer-reviewed)abstract
    • The folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells. Mechanistically, MTHFD2 inhibitors prevented thymidine production leading to misincorporation of uracil into DNA and replication stress. Overall, these results demonstrate a functional link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically with this new class of inhibitors. Helleday and colleagues describe a nanomolar MTHFD2 inhibitor that causes replication stress and DNA damage accumulation in cancer cells via thymidine depletion, demonstrating a potential therapeutic strategy in AML tumors in vivo.
  •  
12.
  •  
13.
  • Gad, Helge, et al. (author)
  • MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool
  • 2014
  • In: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 508:7495, s. 215-221
  • Journal article (peer-reviewed)abstract
    • Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bindin the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.
  •  
14.
  • Svensson, Linda M., et al. (author)
  • Crystal structure of human MTH1 and the 8-oxo-dGMP product complex
  • 2011
  • In: FEBS Letters. - : Wiley. - 0014-5793 .- 1873-3468. ; 585:16, s. 2617-2621
  • Journal article (peer-reviewed)abstract
    • MTH1 hydrolyzes oxidized nucleotide triphosphates, thereby preventing them from being incorporated into DNA. We here present the structures of human MTH1 (1.9 angstrom) and its complex with the product 8-oxo-dGMP (1.8 angstrom). Unexpectedly MTH1 binds the nucleotide in the anti conformation with no direct interaction between the 8-oxo group and the protein. We suggest that the specificity depends on the stabilization of an enol tautomer of the 8-oxo form of dGTP. The binding of the product induces no major structural changes. The structures reveal the mode of nucleotide binding in MTH1 and provide the structural basis for inhibitor design.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-14 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view