SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dessart Luc) "

Sökning: WFRF:(Dessart Luc)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blondin, Stéphane, et al. (författare)
  • StaNdaRT : a repository of standardised test models and outputs for supernova radiative transfer
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 668
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first results of a comprehensive supernova (SN) radiative-transfer (RT) code-comparison initiative (StaNdaRT), where the emission from the same set of standardised test models is simulated by currently used RT codes. We ran a total of ten codes on a set of four benchmark ejecta models of Type Ia SNe. We consider two sub-Chandrasekhar-mass (Mtot = 1.0 M⊙) toy models with analytic density and composition profiles and two Chandrasekhar-mass delayed-detonation models that are outcomes of hydrodynamical simulations. We adopt spherical symmetry for all four models. The results of the different codes, including the light curves, spectra, and the evolution of several physical properties as a function of radius and time are provided in electronic form in a standard format via a public repository. We also include the detailed test model profiles and several Python scripts for accessing and presenting the input and output files. We also provide the code used to generate the toy models studied here. In this paper, we describe the test models, radiative-transfer codes, and output formats in detail, and provide access to the repository. We present example results of several key diagnostic features.
  •  
2.
  • Bulla, Mattia, et al. (författare)
  • ZTF Early Observations of Type Ia Supernovae. III. Early-time Colors As a Test for Explosion Models and Multiple Populations
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Colors of Type Ia supernovae (SNe Ia) in the first few days after explosion provide a potential discriminant between different models. In this paper, we present g - r colors of 65 SNe Ia discovered within 5 days from first light by the Zwicky Transient Facility in 2018, a sample that is about three times larger than that in the literature. We find that g - r colors are intrinsically rather homogeneous at early phases, with about half of the dispersion attributable to photometric uncertainties (0.18 mag). Colors are nearly constant starting from 6 days after first light (g-r similar to -0.15 mag), while the time evolution at earlier epochs is characterized by a continuous range of slopes, from events rapidly transitioning from redder to bluer colors (slope of similar to-0.25 mag day(-1)) to events with a flatter evolution. The continuum in the slope distribution is in good agreement both with models requiring some amount of Ni-56 mixed in the outermost regions of the ejecta and with double-detonation models having thin helium layers (M-He = 0.01 M-circle dot) and varying carbon-oxygen core masses. At the same time, six events show evidence for a distinctive red bump signature predicted by double-detonation models with larger helium masses. We finally identify a significant correlation between the early-timeg - rslopes and supernova brightness, with brighter events associated to flatter color evolution (p-value = 0.006). The distribution of slopes, however, is consistent with being drawn from a single population, with no evidence for two components as claimed in the literature based on B - V colors.
  •  
3.
  • Jerkstrand, Anders, 1978- (författare)
  • Spectral modeling of nebular-phase supernovae
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Massive stars live fast and die young. They shine furiously for a few million years, during which time they synthesize most of the heavy elements in the universe in their cores. They end by blowing themselves up in a powerful explosion known as a supernova (SN). During this process, the core collapses to a neutron star or a black hole, while the outer layers are expelled with velocities of thousands of kilometers per second. The resulting fireworks often outshine the entire host galaxy for many weeks. The explosion energy is eventually radiated away, but powering of the newborn nebula continues by radioactive isotopes synthesized in the explosion. The ejecta are now quite transparent, and we can see the material produced in the deep interiors of the star. To interpret the observations, detailed spectral modeling is needed. This thesis aims to develop and apply state-of-the-art computational tools for interpreting and modeling SN observations in the nebular phase. This requires calculation of the physical conditions throughout the nebula, including non-thermal processes from the radioactivity, thermal and statistical equilibrium, as well as radiative transport. The inclusion of multiline radiative transfer, which we compute with a Monte Carlo technique, represents one of the major advancements presented in this thesis. On February 23 1987, the first SN observable by the naked eye since 1604 exploded, SN 1987A. Its proximity has allowed unprecedented observations, which in turn have lead to significant advancements in our understanding of SN explosions. As a first application of our model, we analyze the 44Tipowered phase (t & 5 years) of SN 1987A. We find that a magnetic field is present in the nebula, trapping the positrons that provide the energy input, and resulting in strong iron lines in the spectrum. We determine the 44Ti mass to 1.5(+0.5−0.5)*10−4 M⊙. From the near-infrared spectrum at an age of 19 years, we identify strong emission lines from explosively synthesized metals such as silicon, calcium, and iron. We use integral-field spectroscopy to construct three-dimensional maps of the ejecta, showing a morphology suggesting an asymmetric explosion. The model is then applied to the close-by and well-observed Type IIP SN 2004et, analyzing its ultraviolet to mid-infrared evolution. Based on its Mg I] 4571 Å, Na I 5890, 5896 Å, [O I] 6300, 6364 Å, and [Ne II] 12.81 mm nebular emission lines, we determine its progenitor mass to be around 15 M⊙. We confirm that silicate dust, SiO, and CO have formed in the ejecta. Finally, the major optical emission lines in a sample of Type IIP SNe areanalyzed.We find that most spectral regions in Type IIP SNe are dominated by emission from the massive hydrogen envelope, which explains the relatively small variation seen in the sample. We also show that the similar line profiles seen from all elements suggest extensive mixing occurring in most hydrogenrich SNe.
  •  
4.
  • Kelly, Patrick L., et al. (författare)
  • Constraints on the Hubble constant from supernova Refsdal's reappearance
  • 2023
  • Ingår i: Science. - 0036-8075 .- 1095-9203. ; 380:6649
  • Tidskriftsartikel (refereegranskat)abstract
    • The gravitationally lensed supernova Refsdal appeared in multiple images produced through gravitational lensing by a massive foreground galaxy cluster. After the supernova appeared in 2014, lens models of the galaxy cluster predicted that an additional image of the supernova would appear in 2015, which was subsequently observed. We use the time delays between the images to perform a blinded measurement of the expansion rate of the Universe, quantified by the Hubble constant (H0). Using eight cluster lens models, we infer kilometers per second per megaparsec. Using the two models most consistent with the observations, we find kilometers per second per megaparsec. The observations are best reproduced by models that assign dark-matter halos to individual galaxies and the overall cluster.
  •  
5.
  • Kuncarayakti, Hanindyo, et al. (författare)
  • Direct Evidence of Two-component Ejecta in Supernova 2016gkg from Nebular Spectroscopy
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Spectral observations of the type-IIb supernova (SN) 2016gkg at 300-800 days are reported. The spectra show nebular characteristics, revealing emission from the progenitor star's metal-rich core and providing clues to the kinematics and physical conditions of the explosion. The nebular spectra are dominated by emission lines of [O i] lambda lambda 6300, 6364 and [Ca ii] lambda lambda 7292, 7324. Other notable, albeit weaker, emission lines include Mg I] lambda 4571, [Fe ii] lambda 7155, O I lambda 7774, Ca II triplet, and a broad, boxy feature at the location of H alpha. Unlike in other stripped-envelope SNe, the [O i] doublet is clearly resolved due to the presence of strong narrow components. The doublet shows an unprecedented emission line profile consisting of at least three components for each [O i]lambda 6300, 6364 line: a broad component (width similar to 2000 km s(-1)), and a pair of narrow blue and red components (width similar to 300 km s(-1)) mirrored against the rest velocity. The narrow component appears also in other lines, and is conspicuous in [O i]. This indicates the presence of multiple distinct kinematic components of material at low and high velocities. The low-velocity components are likely to be produced by a dense, slow-moving emitting region near the center, while the broad components are emitted over a larger volume. These observations suggest an asymmetric explosion, supporting the idea of two-component ejecta that influence the resulting late-time spectra and light curves. SN 2016gkg thus presents striking evidence for significant asymmetry in a standard-energy SN explosion. The presence of material at low velocity, which is not predicted in 1D simulations, emphasizes the importance of multidimensional explosion modeling of SNe.
  •  
6.
  • Shahbandeh, Melissa, et al. (författare)
  • JWST observations of dust reservoirs in type IIP supernovae 2004et and 2017eaw
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 523:4, s. 6048-6060
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernova (SN) explosions have been sought for decades as a possible source of dust in the Universe, providing the seeds of galaxies, stars, and planetary systems. SN 1987A offers one of the most promising examples of significant SN dust formation, but until the James Webb Space Telescope (JWST), instruments have traditionally lacked the sensitivity at both late times (>1 yr post-explosion) and longer wavelengths (i.e. >10 μm) to detect analogous dust reservoirs. Here we present JWST/MIRI observations of two historic Type IIP SNe, 2004et and SN 2017eaw, at nearly 18 and 5 yr post-explosion, respectively. We fit the spectral energy distributions as functions of dust mass and temperature, from which we are able to constrain the dust geometry, origin, and heating mechanism. We place a 90 per cent confidence lower limit on the dust masses for SNe 2004et and 2017eaw of >0.014 and >4 × 10−4 M⊙, respectively. More dust may exist at even colder temperatures or may be obscured by high optical depths. We conclude dust formation in the ejecta to be the most plausible and consistent scenario. The observed dust is radiatively heated to ∼100–150 K by ongoing shock interaction with the circumstellar medium. Regardless of the best fit or heating mechanism adopted, the inferred dust mass for SN 2004et is the second highest (next to SN 1987A) mid-infrared inferred dust mass in extragalactic SNe thus far, promoting the prospect of SNe as potential significant sources of dust in the Universe.
  •  
7.
  • Zsíros, Szanna, et al. (författare)
  • Serendipitous detection of the dusty Type IIL SN 1980K with JWST/MIRI
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 529:1, s. 155-168
  • Tidskriftsartikel (refereegranskat)abstract
    • We present mid-infrared (mid-IR) imaging of the Type IIL supernova (SN) 1980K with the JWST more than 40 yr post-explosion. SN 1980K, located in the nearby (D ≈ 7 Mpc) ‘SN factory’ galaxy NGC 6946, was serendipitously captured in JWST/MIRI images taken of the field of SN 2004et in the same galaxy. SN 1980K serves as a promising candidate for studying the transitional phase between young SNe and older SN remnants and also provides a great opportunity to investigate its the close environment. SN 1980K can be identified as a clear and bright point source in all eight MIRI filters from F560W up to F2550W. We fit analytical dust models to the mid-IR spectral energy distribution that reveal a large amount (Md ≈ 0.002 M⊙) of Si-dominated dust at Tdust≈150 K (accompanied by a hotter dust/gas component), and also computed numerical SED dust models. Radiative transfer modelling of a late-time optical spectrum obtained recently with Keck discloses that an even larger (∼0.24–0.58 M⊙) amount of dust is needed in order for selective extinction to explain the asymmetric line profile shapes observed in SN 1980K. As a conclusion, with JWST, we may see i) pre-existing circumstellar dust heated collisionally (or, partly radiatively), analogous to the equatorial ring of SN 1987A, or ii) the mid-IR component of the presumed newly-formed dust, accompanied by much more colder dust present in the ejecta (as suggested by the late-time the optical spectra).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy