SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dick Thelander Kimberly) "

Sökning: WFRF:(Dick Thelander Kimberly)

  • Resultat 1-25 av 187
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Paschoal Jr., Waldomiro, 1977-, et al. (författare)
  • Magnetoresistance in Mn ion-implanted GaAs:Zn nanowires
  • 2014
  • Ingår i: Applied Physics Letters. - New York : American Institute of Physics (AIP). - 0003-6951 .- 1077-3118. ; 104:15
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the magnetoresistance (MR) in a series of Zn doped (p-type) GaAs nanowires implanted with different Mn concentrations. The nanowires with the lowest Mn concentration (~0.0001%) exhibit a low resistance of a few kΩ at 300K and a 4% positive MR at 1.6K, which can be well described by invoking a spin-split subband model. In contrast, nanowires with the highest Mn concentration (4%) display a large resistance of several MΩ at 300K and a large negative MR of 85% at 1.6K. The large negative MR is interpreted in terms of spin-dependent hopping in a complex magnetic nanowire landscape of magnetic polarons, separated by intermediate regions of Mn impurity spins. Sweeping the magnetic field back and forth for the 4% sample reveals a hysteresis that indicates the presence of a weak ferromagnetic phase. We propose co-doping with Zn to be a promising way to reach the goal of realizing ferromagnetic Ga1-xMnxAs nanowires for future nanospintronics. © 2014 AIP Publishing LLC.
  •  
2.
  • Johannes, A., et al. (författare)
  • Enhanced sputtering and incorporation of Mn in implanted GaAs and ZnO nanowires
  • 2014
  • Ingår i: Journal of Physics D: Applied Physics. - Bristol : IOP Publishing. - 1361-6463 .- 0022-3727. ; 47:39
  • Tidskriftsartikel (refereegranskat)abstract
    • We simulated and experimentally investigated the sputter yield of ZnO and GaAs nanowires, which were implanted with energetic Mn ions at room temperature. The resulting thinning of the nanowires and the dopant concentration with increasing Mn ion fluency were measured by accurate scanning electron microscopy (SEM) and nano-x-Ray Fluorescence (nanoXRF) quantification, respectively. We observed a clearly enhanced sputter yield for the irradiated nanowires compared to bulk, which is also corroborated by iradina simulations. These show a maximum if the ion range matches the nanowire diameter. As a consequence of the erosion thinning of the nanowire, the incorporation of the Mn dopants is also enhanced and increases non-linearly with increasing ion fluency.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Borg, Mattias, et al. (författare)
  • InAs/GaSb Heterostructure Nanowires for Tunnel Field-Effect Transistors.
  • 2010
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 10:Online August 24, 2010, s. 4080-4085
  • Tidskriftsartikel (refereegranskat)abstract
    • InAs/GaSb nanowire heterostructures with thin GaInAs inserts were grown by MOVPE and characterized by electrical measurements and transmission electron microscopy. Down-scaling of the insert thickness was limited because of an observed sensitivity of GaSb nanowire growth to the presence of In. By employing growth interrupts in between the InAs and GaInAs growth steps it was possible to reach an insert thickness down to 25 nm. Two-terminal devices show a diode behavior, where temperature-dependent measurements indicate a heterostructure barrier height of 0.5 eV, which is identified as the valence band offset between the InAs and GaSb. Three-terminal transistor structures with a top-gate positioned at the heterointerface show clear indications of band-to-band tunnelling.
  •  
8.
  • Borg, Mattias, et al. (författare)
  • Influence of doping on the electronic transport in GaSb/InAs(Sb) nanowire tunnel devices
  • 2012
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 101:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of various doping profiles on the electronic transport in GaSb/InAs(Sb) nanowire tunnel diodes is investigated. Zn-doping of the GaSb segment increases both the peak current density and the current level in reverse bias. Top-gated diodes exhibit peak current modulation with a threshold voltage which can be controlled by Zn-doping the InAs(Sb) segment. By intentionally n-doping the InAs(Sb) segment degenerate doping on both sides of the heterojunction can be achieved, as well as tunnel diodes with peak current of 420 kA/cm(2) at V-DS = 0.16V and a record-high current density of 3.6 MA/cm(2) at V-DS = -0.5V. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4739082]
  •  
9.
  • Deppert, Knut, et al. (författare)
  • Epitaxielle Kristallnadeln und -bäume
  • 2005
  • Ingår i: Book of abstracts: DGKK-Jahrestagung, Köln, Germany (2005).
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
10.
  •  
11.
  • Dey, Anil, et al. (författare)
  • High Current Density InAsSb/GaSb Tunnel Field Effect Transistors
  • 2012
  • Ingår i: Device research conference. - 1548-3770. ; , s. 205-206
  • Konferensbidrag (refereegranskat)abstract
    • Steep-slope devices, such as tunnel field-effect transistors (TFETs), have recently gained interest due to their potential for low power operation at room temperature. The devices are based on inter-band tunneling which could limit the on-current since the charge carriers must tunnel through a barrier to traverse the device. The InAs/GaSb heterostructure forms a broken type II band alignment which enables inter-band tunneling without a barrier, allowing high on-currents. We have recently demonstrated high current density (Ion,reverse = 17.5 mA/µm) nanowire Esaki diodes and in this work we investigate the potential of InAs/GaSb heterostructure nanowires to operate as TFETs. We present device characterization of InAs 0.85 Sb 0.15 /GaSb nanowire TFETs, which exhibit record-high on-current levels.
  •  
12.
  • Dey, Anil, et al. (författare)
  • High-Current GaSb/InAs(Sb) Nanowire Tunnel Field-Effect Transistors
  • 2013
  • Ingår i: IEEE Electron Device Letters. - 0741-3106. ; 34:2, s. 211-213
  • Tidskriftsartikel (refereegranskat)abstract
    • We present electrical characterization of GaSb/InAs(Sb) nanowire tunnel field-effect transistors. The broken band alignment of the GaSb/InAs(Sb) heterostructure is exploited to allow for interband tunneling without a barrier, leading to high ON-current levels. We report a maximum drive current of 310 μA/μm at Vds = 0.5 V. Devices with scaled gate oxides display transconductances up to gm = 250 mS/mm at Vds = 300 mV, which are normalized to the nanowire circumference at the axial heterojunction.
  •  
13.
  • Dey, Anil, et al. (författare)
  • High-Performance InAs Nanowire MOSFETs
  • 2012
  • Ingår i: IEEE Electron Device Letters. - 0741-3106. ; 33:6, s. 791-793
  • Tidskriftsartikel (refereegranskat)abstract
    • In this letter, we present a 15-nm-diameter InAs nanowire MOSFET with excellent on and off characteristics. An n-i-n doping profile was used to reduce the source and drain resistances, and an Al2O3/HfO2 bilayer was introduced in the high-k process. The nanowires exhibit high drive currents, up to 1.25 A/mm, normalized to the nanowire circumference, and current densities up to 34 MA/cm2 (VD = 0.5 V). For a nominal LG = 100 nm, we observe an extrinsic transconductance (gm) of 1.23 S/mm and a subthreshold swing of 93 mV/decade at VD = 10 mV.
  •  
14.
  • Dick Thelander, Kimberly, et al. (författare)
  • Crystal Phase Engineering in Single InAs Nanowires.
  • 2010
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 10:9, s. 3494-3499
  • Tidskriftsartikel (refereegranskat)abstract
    • Achieving phase purity and control in III-V nanowires is a necessity for future nanowire-based device applications. Many works have focused on cleaning specific crystal phases of defects such as twin planes and stacking faults, using parameters such as diameter, temperature, and impurity incorporation. Here we demonstrate an improved method for crystal phase control, where crystal structure variations in single InAs nanowires are designed with alternating wurtzite (WZ) and zinc blende (ZB) segments of precisely controlled length and perfect interfaces. We also demonstrate the inclusion of single twin planes and stacking faults with atomic precision in their placement, designed ZB quantum dots separated by thin segments of WZ, acting as tunnel barriers for electrons, and structural superlattices (polytypic and twin plane). Finally, we present electrical data to demonstrate the applicability of these designed structures to investigation of fundamental properties. From electrical measurements we observe clear signatures of controlled structural quantum dots in nanowires. This method will be directly applicable to a wide range of nanowire systems.
  •  
15.
  • Dick Thelander, Kimberly, et al. (författare)
  • Growth of GaP nanotree structures by sequential seeding of 1D nanowires
  • 2004
  • Ingår i: Journal of Crystal Growth. - : Elsevier BV. - 0022-0248. ; 272:1-4, s. 131-137
  • Tidskriftsartikel (refereegranskat)abstract
    • Complex nanostructures are becoming increasingly important for the development of nanoscale devices and functional nanomaterials. Precise control of size and morphology of these structures is critical to their fabrication and exploitation. We have developed a method for stepwise growth of tree-like nanostructures via the vapour liquid-solid (VLS) growth mode, demonstrated for III-V semiconductor materials. This method uses the initial seeding of nanowires by catalytic aerosol nanoparticles to form the trunk, followed by sequential seeding of branching structures. Here we present a detailed study of the growth of these complex structures using Gap. Diameter of each level of nanowires is directly determined by seed particle diameters, and number of branches is determined by seed particle density. Growth rate is shown to increase with temperature to a maximum corresponding to the temperature of complete decomposition of the Group-III precursor material, and subsequently decrease due to competition with bulk growth. Growth rate also depends on flow of the Group-III precursor, but not on the Group-V precursor. Finally, there is a relationship between the number of branches and their growth rate, suggesting that material diffusion plays a role in nanowire branch growth. (C) 2004 Elsevier B.V. All rights reserved.
  •  
16.
  • Ek, Martin, et al. (författare)
  • Formation of the axial heterojunction in GaSb/InAs(Sb) nanowires with high crystal quality
  • 2011
  • Ingår i: Crystal Growth & Design. - : American Chemical Society (ACS). - 1528-7483 .- 1528-7505. ; 11:10, s. 4588-4593
  • Tidskriftsartikel (refereegranskat)abstract
    • Switching of the group-III element in III-V nanowire heterostructures is difficult due to the high solubility of group-III atoms in the Au seed particle. In addition, switching from Sb to a different group-V element has not been achieved in binary materials, largely due to its high solubility in Au. In MOVPE growth the use of Sb precursors presents further complications due to reactor background contamination. In this paper we demonstrate growth of GaSb/InAs(Sb) nanowire heterostructures with potential applications in tunneling devices, and study the processes occurring during the transition from GaSb to InAs growth. We show how the heterostructure can be grown with a sharp transition by taking advantage of a growth stop, which occurs naturally as the Au seed particle is emptied of Ga and filled with In. The remaining Sb background in the reactor during the InAs growth results in a finite Sb incorporation into this segment. This has the advantage of suppressing stacking faults in the InAs(Sb) segment, making the entire heterostructure a single zincblende crystal.
  •  
17.
  • Fahlvik Svensson, Sofia, et al. (författare)
  • Control and understanding of kink formation in InAs-InP heterostructure nanowires.
  • 2013
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 24:34
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanowire heterostructures are of special interest for band structure engineering due to an expanded range of defect-free material combinations. However, the higher degree of freedom in nanowire heterostructure growth comes at the expense of challenges related to nanowire-seed particle interactions, such as undesired composition, grading and kink formation. To better understand the mechanisms of kink formation in nanowires, we here present a detailed study of the dependence of heterostructure nanowire morphology on indium pressure, nanowire diameter, and nanowire density. We investigate InAs-InP-InAs heterostructure nanowires grown with chemical beam epitaxy, which is a material system that allows for very abrupt heterointerfaces. Our observations indicate that the critical parameter for kink formation is the availability of indium, and that the resulting morphology is also highly dependent on the length of the InP segment. It is shown that kinking is associated with the formation of an inclined facet at the interface between InP and InAs, which destabilizes the growth and leads to a change in growth direction. By careful tuning of the growth parameters, it is possible to entirely suppress the formation of this inclined facet and thereby kinking at the heterointerface. Our results also indicate the possibility of producing controllably kinked nanowires with a high yield.
  •  
18.
  • Ganjipour, Bahram, et al. (författare)
  • Carrier control and transport modulation in GaSb/InAsSb core/shell nanowires
  • 2012
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 101:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We report transport studies of GaSb/InAs core/shell nanowires. It is shown that with increasing InAs shell thickness, it is possible to tune the carrier concentrations and transport in the structures from p-type (core-dominated) to n-type (shell dominated). For nanowires with an intermediate shell thickness (5-7 nm), we show that the transport is ambipolar, such that an applied top-gate potential can provide further control of carrier type and transport path. In this range, the nature of the GaSb-InAs junction also changes from broken gap (semimetal) to staggered (narrow bandgap) with a small decrease in shell thickness. From a device point of view, we demonstrate that the presence of a thin (<3 nm) InAs shell improves p-type GaSb nanowire transistor characteristics. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4749283]
  •  
19.
  • Ganjipour, Bahram, et al. (författare)
  • Electrical properties of GaSb/InAsSb core/shell nanowires
  • 2014
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 25:42
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperature dependent electronic properties of GaSb/InAsSb core/shell and GaSb nanowires have been studied. Results from two-probe and four-probe measurements are compared to distinguish between extrinsic (contact-related) and intrinsic (nanowire) properties. It is found that a thin (2-3 nm) InAsSb shell allows low barrier charge carrier injection to the GaSb core, and that the presence of the shell also improves intrinsic nanowire mobility and conductance in comparison to bare GaSb nanowires. Maximum intrinsic field effect mobilities of 200 and 42 cm(2) Vs(-1) were extracted for the GaSb/InAsSb core/shell and bare-GaSb NWs at room temperature, respectively. The temperature-dependence of the mobility suggests that ionized impurity scattering is the dominant scattering mechanism in bare GaSb while phonon scattering dominates in core/shell nanowires. Top-gated field effect transistors were fabricated based on radial GaSb/InAsSb heterostructure nanowires with shell thicknesses in the range 5-7 nm. The fabricated devices exhibited ambipolar conduction, where the output current was studied as a function of AC gate voltage and frequency. Frequency doubling was experimentally demonstrated up to 20 kHz. The maximum operating frequency was limited by parasitic capacitance associated with the measurement chip geometry.
  •  
20.
  •  
21.
  • Ganjipour, Bahram, et al. (författare)
  • High current density Esaki tunnel diodes based on GaSb-InAsSb heterostructure nanowires
  • 2011
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 11:10, s. 4222-4226
  • Tidskriftsartikel (refereegranskat)abstract
    • We present electrical characterization of broken gap GaSb-InAsSb nanowire heterojunctions. Esaki diode characteristics with maximum reverse current of 1750 kA/cm2 at 0.50 V, maximum peak current of 67 kA/cm2 at 0.11 V, and peak-to-valley ratio (PVR) of 2.1 are obtained at room temperature. The reverse current density is comparable to that of state-of-the-art tunnel diodes based on heavily doped p-n junctions. However, the GaSb-InAsSb diodes investigated in this work do not rely on heavy doping, which permits studies of transport mechanisms in simple transistor structures processed with high-κ gate dielectrics and top-gates. Such processing results in devices with improved PVR (3.5) and stability of the electrical properties.
  •  
22.
  • Gluschke, Jan-Göran, et al. (författare)
  • Characterization of Ambipolar GaSb/InAs Core-Shell Nanowires by Thermovoltage Measurements.
  • 2015
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 9:7, s. 7033-7040
  • Tidskriftsartikel (refereegranskat)abstract
    • In semiconductor heterostructures with a type II band alignment, such as GaSb-InAs, conduction can be tuned from electron- to hole-dominated using an electrostatic gate. However, traditional conductance measurements give no direct information on the carrier type, and thus limit the ability to distinguish transport effects originating from the two materials. Here, we employ thermovoltage measurements to GaSb/InAs core-shell nanowires, and reliably identify the dominant carrier type at room temperature as well as in the quantum transport regime at 4.2 K, even in cases where the conductance measurement does not allow for such a distinction. In addition, we show that theoretical modeling using the conductance data as input can reproduce the measured thermovoltage under the assumption that electron and hole states shift differently in energy with the applied gate voltage.
  •  
23.
  • Gorji, Sepideh, et al. (författare)
  • Demonstration of Defect-Free and Composition Tunable Ga(x)In(1-x)Sb Nanowires.
  • 2012
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 12:9, s. 4914-4919
  • Tidskriftsartikel (refereegranskat)abstract
    • The Ga(x)In(1-x)Sb ternary system has many interesting material properties, such as high carrier mobilities and a tunable range of bandgaps in the infrared. Here we present the first report on the growth and compositional control of Ga(x)In(1-x)Sb material grown in the form of nanowires from Au seeded nanoparticles by metalorganic vapor phase epitaxy. The composition of the grown Ga(x)In(1-x)Sb nanowires is precisely controlled by tuning the growth parameters where x varies from 1 to ∼0.3. Interestingly, the growth rate of the Ga(x)In(1-x)Sb nanowires increases with diameter, which we model based on the Gibbs-Thomson effect. Nanowire morphology can be tuned from high to very low aspect ratios, with perfect zinc blende crystal structure regardless of composition. Finally, electrical characterization on nanowire material with a composition of Ga(0.6)In(0.4)Sb showed clear p-type behavior.
  •  
24.
  • Jurgilaitis, Andrius, et al. (författare)
  • Time-Resolved X-ray Diffraction Investigation of the Modified Phonon Dispersion in InSb Nanowires
  • 2014
  • Ingår i: Nano letters (Print). - Washington, DC : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 14:2, s. 541-546
  • Tidskriftsartikel (refereegranskat)abstract
    • The modified phonon dispersion is of importance for understanding the origin of the reduced heat conductivity in nanowires. We have measured the phonon dispersion for 50 nm diameter InSb (111) nanowires using time-resolved X-ray diffraction. By comparing the sound speed of the bulk (3880 m/s) and that of a classical thin rod (3600 m/s) to our measurement (2880 m/s), we conclude that the origin of the reduced sound speed and thereby to the reduced heat conductivity is that the C44 elastic constant is reduced by 35% compared to the bulk material. © 2014 American Chemical Society.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 187
Typ av publikation
tidskriftsartikel (125)
konferensbidrag (58)
forskningsöversikt (3)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (162)
övrigt vetenskapligt/konstnärligt (25)
Författare/redaktör
Dick Thelander, Kimb ... (166)
Samuelson, Lars (69)
Deppert, Knut (64)
Thelander, Claes (55)
Lehmann, Sebastian (46)
Wallenberg, Reine (34)
visa fler...
Seifert, Werner (32)
Borg, Mattias (29)
Caroff, Philippe (29)
Johansson, Jonas (28)
Wernersson, Lars-Eri ... (27)
Karlsson, Lisa (21)
Larsson, Magnus (18)
Jacobsson, Daniel (18)
Dick, Kimberly A. (17)
Ek, Martin (17)
Messing, Maria (16)
Bolinsson, Jessica (15)
Ganjipour, Bahram (15)
Mårtensson, Thomas (13)
Nilsson, Malin (13)
Wacaser, Brent (13)
Dey, Anil (11)
Mikkelsen, Anders (10)
Gorji, Sepideh (10)
Leijnse, Martin (9)
Hillerich, Karla (9)
Borgström, Magnus (8)
Pistol, Mats Erik (8)
Timm, Rainer (8)
Linke, Heiner (7)
Gustafsson, Anders (6)
Storm, Kristian (6)
Wagner, Jakob (6)
Hjort, Martin (6)
Björk, Mikael (6)
Persson, Ann (6)
Namazi, Luna (6)
Lundgren, Edvin (5)
Malm, Jan-Olle (5)
Knutsson, Johan (5)
Fahlvik Svensson, So ... (5)
Sköld, Niklas (5)
Plissard, Sebastien (5)
Lind, Erik (4)
Maisi, Ville F. (4)
Dick, K. A. (4)
Mandl, Bernhard (4)
Chen, I. Ju (4)
Dick, Kimberly (4)
visa färre...
Lärosäte
Lunds universitet (187)
Högskolan i Halmstad (3)
Chalmers tekniska högskola (2)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Luleå tekniska universitet (1)
visa fler...
Linköpings universitet (1)
Linnéuniversitetet (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (187)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (133)
Teknik (81)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy