SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dravins D.) "

Sökning: WFRF:(Dravins D.)

  • Resultat 1-25 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acharya, B. S., et al. (författare)
  • Introducing the CTA concept
  • 2013
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 43, s. 3-18
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Actis, M., et al. (författare)
  • Design concepts for the Cherenkov Telescope Array CTA : an advanced facility for ground-based high-energy gamma-ray astronomy
  • 2011
  • Ingår i: Experimental astronomy. - : Springer. - 0922-6435 .- 1572-9508. ; 32:3, s. 193-316
  • Tidskriftsartikel (refereegranskat)abstract
    • Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
  •  
3.
  •  
4.
  • Kasai, E., et al. (författare)
  • Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference (ICRC2021) - GAI - Gamma Ray Indirect. - Trieste, Italy : Sissa Medialab. - 1824-8039. ; 395
  • Konferensbidrag (refereegranskat)abstract
    • In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory. © Copyright owned by the author(s) under the terms of the Creative Commons.
  •  
5.
  • Miener, T., et al. (författare)
  • Reconstruction of stereoscopic CTA events using deep learning with CTLearn
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference (ICRC2021) - GAI - Gamma Ray Indirect. - Trieste, Italy : Sissa Medialab. - 1824-8039. ; 395
  • Konferensbidrag (refereegranskat)abstract
    • The Cherenkov Telescope Array (CTA), conceived as an array of tens of imaging atmospheric Cherenkov telescopes (IACTs), is an international project for a next-generation ground-based gamma-ray observatory, aiming to improve on the sensitivity of current-generation instruments a factor of five to ten and provide energy coverage from 20 GeV to more than 300 TeV. Arrays of IACTs probe the very-high-energy gamma-ray sky. Their working principle consists of the simultaneous observation of air showers initiated by the interaction of very-high-energy gamma rays and cosmic rays with the atmosphere. Cherenkov photons induced by a given shower are focused onto the camera plane of the telescopes in the array, producing a multi-stereoscopic record of the event. This image contains the longitudinal development of the air shower, together with its spatial, temporal, and calorimetric information. The properties of the originating very-high-energy particle (type, energy, and incoming direction) can be inferred from those images by reconstructing the full event using machine learning techniques. In this contribution, we present a purely deep-learning driven, full-event reconstruction of simulated, stereoscopic IACT events using CTLearn. CTLearn is a package that includes modules for loading and manipulating IACT data and for running deep learning models, using pixel-wise camera data as input. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)
  •  
6.
  •  
7.
  • Armstrong, T.P., et al. (författare)
  • Monte Carlo Simulations and Validation of NectarCAM, a Medium Sized Telescope Camera for CTA
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference (ICRC2021) - GAI - Gamma Ray Indirect. - Trieste, Italy : Sissa Medialab. - 1824-8039. ; 395
  • Konferensbidrag (refereegranskat)abstract
    • The upcoming Cherenkov Telescope Array (CTA) ground-based gamma-ray observatory will open up our view of the very high energy Universe, offering an improvement in sensitivity of 5-10 times that of previous experiments. NectarCAM is one of the proposed cameras for the Medium-Sized Telescopes (MST) which have been designed to cover the core energy range of CTA, from 100 GeV to 10 TeV. The final camera will be capable of GHz sampling and provide a field of view of 8 degrees with its 265 modules of 7 photomultiplier each (for a total of 1855 pixels). In order to validate the performance of NectarCAM, a partially-equipped prototype has been constructed consisting of only the inner 61-modules. It has so far undergone testing at the integration test-bench facility in CEA Paris-Saclay (France) and on a prototype of the MST structure in Adlershof (Germany). To characterize the performance of the prototype, Monte Carlo simulations were conducted using a detailed model of the 61 module camera in the CORSIKA/sim_telarray framework. This contribution provides an overview of this work including the comparison of trigger and readout performance on test-bench data and trigger and image parameterization performance during on-sky measurements. © Copyright owned by the author(s) under the terms of the Creative Commons.
  •  
8.
  • Aschersleben, J., et al. (författare)
  • Application of pattern spectra and convolutional neural networks to the analysis of simulated Cherenkov Telescope Array data
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference (ICRC2021) - GAI - Gamma Ray Indirect. - Trieste, Italy : Sissa Medialab. - 1824-8039. ; 395
  • Konferensbidrag (refereegranskat)abstract
    • The Cherenkov Telescope Array (CTA) will be the next generation gamma-ray observatory and will be the major global instrument for very-high-energy astronomy over the next decade, offering 5 − 10 × better flux sensitivity than current generation gamma-ray telescopes. Each telescope will provide a snapshot of gamma-ray induced particle showers by capturing the induced Cherenkov emission at ground level. The simulation of such events provides images that can be used as training data for convolutional neural networks (CNNs) to determine the energy of the initial gamma rays. Compared to other state-of-the-art algorithms, analyses based on CNNs promise to further enhance the performance to be achieved by CTA. Pattern spectra are commonly used tools for image classification and provide the distributions of the shapes and sizes of various objects comprising an image. The use of relatively shallow CNNs on pattern spectra would automatically select relevant combinations of features within an image, taking advantage of the 2D nature of pattern spectra. In this work, we generate pattern spectra from simulated gamma-ray events instead of using the raw images themselves in order to train our CNN for energy reconstruction. This is different from other relevant learning and feature selection methods that have been tried in the past. Thereby, we aim to obtain a significantly faster and less computationally intensive algorithm, with minimal loss of performance. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)
  •  
9.
  • Brown, Anthony M., et al. (författare)
  • Active Galactic Nuclei population studies with the Cherenkov Telescope Array
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference (ICRC2021) - GAI - Gamma Ray Indirect. - Trieste, Italy : Sissa Medialab. - 1824-8039. ; 395
  • Konferensbidrag (refereegranskat)abstract
    • The Cherenkov Telescope Array (CTA) observatory is the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Building on the strengths of current IACTs, CTA is designed to achieve an order of magnitude improvement in sensitivity, with unprecedented angular and energy resolution. CTA will also increase the energy reach of IACTs, observing photons in the energy range from 20 GeV to beyond 100 TeV. These advances in performance will see CTA heralding in a new era for high-energy astrophysics, with the emphasis shifting from source discovery, to population studies and precision measurements. In this talk we discuss CTA’s ability to conduct source population studies of γ-ray bright active galactic nuclei and how this ability will enhance our understanding on the redshift evolution of this dominant γ-ray source class. © Copyright owned by the author(s) under the terms of the Creative Commons.
  •  
10.
  • Brådvik, Björn, et al. (författare)
  • Disturbances of speech prosody following right hemisphere infarcts
  • 1991
  • Ingår i: Acta Neurologica Scandinavica. - 1600-0404. ; 84:2, s. 114-126
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to perceive and express emotional, as well as number of linguistic prosodic qualities of speech was tested in 20 Swedish-speaking patients with right-sided cortical, as well as purely subcortical brain infarcts, and in 18 normal controls. The infarcts were assessed by clinical neurological examination, and by CT, EEG, and measurements of regional cerebral blood flow (rCBF). In the patients the identification of emotional messages was disturbed, as well as the identification and production of several linguistic prosodic qualities. The study supports the claim that prosodic impairment could be linguistic in nature, and not secondary to affective disorder. The total degree of anatomical and functional disturbance of the right hemisphere played a role for both the ability to identify emotional messages and for identification of two of the linguistic prosodic qualities tested. However, it was not possible to find support for the hypothesis that the organization of prosody in the right hemisphere mirrors that of propositional speech on the left side.
  •  
11.
  • Brådvik, Björn, et al. (författare)
  • Do single right hemisphere infarcts or transient ischaemic attacks result in aprosody?
  • 1990
  • Ingår i: Acta Neurologica Scandinavica. - 1600-0404. ; 81:1, s. 61-70
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to perceive and express prosodic qualities of speech was tested in 21 patients with a single focal ischaemic disturbance of the right hemisphere, 14 patients having an infarct and 7 transient ischaemic attacks, and in 21 age-matched normal controls. All patients were predominantly right-handed. None showed signs of aphasia. Pure tone audiometry showed acceptable hearing for speech. The cerebral lesions were assessed by clinical neurologic examination, and by CT, EEG and measurement of regional cerebral blood flow (rCBF) using intravenous 133-xenon. The prosodia test included items testing: the ability to perceive accentual and emotional qualities of speech, and the ability to express and vary such qualities. The test did not discriminate between the patients and the controls, although some patients had large right-sided lesions. This negative finding indicates that aprosody in patients with brain lesions appears more difficult to detect than has previously been assumed. Highly sensitive tests are most likely required.
  •  
12.
  • Carosi, Alessandro, et al. (författare)
  • The Cherenkov Telescope Array transient and multi-messenger program
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference (ICRC2021) - GAI - Gamma Ray Indirect. - Trieste, Italy : Sissa Medialab. - 1824-8039. ; 395
  • Konferensbidrag (refereegranskat)abstract
    • The Cherenkov Telescope Array (CTA) is a next generation ground-based very-high-energy gamma-ray observatory that will allow for observations in the >10 GeV range with unprecedented photon statistics and sensitivity. This will enable the investigation of the yet-marginally explored physics of short-time-scale transient events. CTA will thus become an invaluable instrument for the study of the physics of the most extreme and violent objects and their interactions with the surrounding environment. The CTA Transient program includes follow-up observations of a wide range of multi-wavelength and multi-messenger alerts, ranging from compact galactic binary systems to extragalactic events such as gamma-ray bursts (GRBs), core-collapse supernovae and bright AGN flares. In recent years, the first firm detection of GRBs by current Cherenkov telescope collaborations, the proven connection between gravitational waves and short GRBs, as well as the possible neutrino-blazar association with TXS 0506+056 have shown the importance of coordinated follow-up observations triggered by these different cosmic signals in the framework of the birth of multi-messenger astrophysics. In the next years, CTA will play a major role in these types of observations by taking advantage of its fast slewing (especially for the CTA Large Size Telescopes), large effective area and good sensitivity, opening new opportunities for time-domain astrophysics in an energy range not affected by selective absorption processes typical of other wavelengths. In this contribution we highlight the common approach adopted by the CTA Transients physics working group to perform the study of transient sources in the very-high-energy regime. © Copyright owned by the author(s) under the terms of the Creative Commons.
  •  
13.
  • Di Piano, A., et al. (författare)
  • Detection methods for the Cherenkov Telescope Array at very-short exposure times
  • 2022
  • Ingår i: Proceedings of Science. ; 395
  • Konferensbidrag (refereegranskat)abstract
    • The Cherenkov Telescope Array (CTA) will be the next generation ground-based observatory for very-high-energy (VHE) gamma-ray astronomy, with the deployment of tens of highly sensitive and fast-reacting Cherenkov telescopes. It will cover a wide energy range (20 GeV - 300 TeV) with unprecedented sensitivity. To maximize the scientific return, the observatory will be provided with an online software system that will perform the first analysis of scientific data in real-time. This study investigates the precision and accuracy of available science tools and analysis techniques for the short-term detection of gamma-ray sources, in terms of sky localization, detection significance and, if significant detection is achieved, a first estimation of the integral photon flux. The scope is to evaluate the feasibility of the algorithms' implementation in the real-time analysis of CTA. In this contribution we present a general overview of the methods and some of the results for the test case of the short-term detection of a gamma-ray burst afterglow, as the VHE counterpart of a gravitational wave event. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)
  •  
14.
  •  
15.
  • Dravins, Dainis, et al. (författare)
  • Long-baseline optical intensity interferometry Laboratory demonstration of diffraction-limited imaging
  • 2015
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 580
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. A long-held vision has been to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, and reveal interacting gas flows in binary systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and also used for intensity interferometry. Second-order spatial coherence of light is obtained by cross correlating intensity fluctuations measured in different pairs of telescopes. With no optical links between them, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are approximately one meter, making the method practically immune to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Aims. Previous theoretical modeling has shown that full images should be possible to retrieve from observations with such telescope arrays. This project aims at verifying diffraction-limited imaging experimentally with groups of detached and independent optical telescopes. Methods. In a large optics laboratory, artificial stars (single and double, round and elliptic) were observed by an array of small telescopes. Using high-speed photon-counting solid-state detectors and real-time electronics, intensity fluctuations were cross-correlated over up to 180 baselines between pairs of telescopes, producing coherence maps across the interferometric Fourier-transform plane. Results. These interferometric measurements were used to extract parameters about the simulated stars, and to reconstruct their two-dimensional images. As far as we are aware, these are the first diffraction-limited images obtained from an optical array only linked by electronic software, with no optical connections between the telescopes. Conclusions. These experiments serve to verify the concepts for long-baseline aperture synthesis in the optical, somewhat analogous to radio interferometry.
  •  
16.
  • Dravins, Dainis, et al. (författare)
  • Optical aperture synthesis with electronically connected telescopes.
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths.
  •  
17.
  • Dravins, Dainis, et al. (författare)
  • Optical intensity interferometry with the Cherenkov Telescope Array
  • 2013
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 43, s. 331-347
  • Tidskriftsartikel (refereegranskat)abstract
    • With its unprecedented light-collecting area for night-sky observations, the Cherenkov Telescope Array (CTA) holds great potential for also optical stellar astronomy, in particular as a multi-element intensity interferometer for realizing imaging with sub-milliarcsecond angular resolution. Such an order-of-magnitude increase of the spatial resolution achieved in optical astronomy will reveal the surfaces of rotationally flattened stars with structures in their circumstellar disks and winds, or the gas flows between close binaries. Image reconstruction is feasible from the second-order coherence of light, measured as the temporal correlations of arrival times between photons recorded in different telescopes. This technique (once pioneered by Hanbury Brown and Twiss) connects telescopes only with electronic signals and is practically insensitive to atmospheric turbulence and to imperfections in telescope optics. Detector and telescope requirements are very similar to those for imaging air Cherenkov observatories, the main difference being the signal processing (calculating cross correlations between single camera pixels in pairs of telescopes). Observations of brighter stars are not limited by sky brightness, permitting efficient CTA use during also bright-Moon periods. While other concepts have been proposed to realize kilometer-scale optical interferometers of conventional amplitude (phase-) type, both in space and on the ground, their complexity places them much further into the future than CTA, which thus could become the first kilometer-scale optical imager in astronomy.
  •  
18.
  • Dravins, Dainis, et al. (författare)
  • Photonic Astronomy and Quantum Optics
  • 2008
  • Ingår i: High Time Resolution Astrophysics (Astrophysics and Space Science Library). - 9781402065170 ; 353, s. 95-132
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
19.
  •  
20.
  • Dravins, Dainis, et al. (författare)
  • Stellar intensity interferometry: Prospects for sub-milliarcsecond optical imaging
  • 2012
  • Ingår i: New Astronomy Reviews. - : Elsevier BV. - 1872-9630 .- 1387-6473. ; 56:5, s. 143-167
  • Tidskriftsartikel (refereegranskat)abstract
    • Using kilometric arrays of air Cherenkov telescopes at short wavelengths, intensity interferometry may increase the spatial resolution achieved in optical astronomy by an order of magnitude, enabling images of rapidly rotating hot stars with structures in their circumstellar disks and winds, or mapping out patterns of nonradial pulsations across stellar surfaces. Intensity interferometry (once pioneered by Hanbury Brown and Twiss) connects telescopes only electronically, and is practically insensitive to atmospheric turbulence and optical imperfections, permitting observations over long baselines and through large air-masses, also at short optical wavelengths. The required large telescopes (similar to 10 m) with very fast detectors (similar to ns) are becoming available as the arrays primarily erected to measure Cherenkov light emitted in air by particle cascades initiated by energetic gamma rays. Planned facilities (e.g., CTA, Cherenkov Telescope Array) envision many tens of telescopes distributed over a few square km. Digital signal handling enables very many baselines (from tens of meters to over a kilometer) to be simultaneously synthesized between many pairs of telescopes, while stars may be tracked across the sky with electronic time delays, in effect synthesizing an optical interferometer in software. Simulated observations indicate limiting magnitudes around m(v) = 8, reaching angular resolutions similar to 30 mu arcsec in the violet. The signal-to-noise ratio favors high-temperature sources and emission-line structures, and is independent of the optical passband, be it a single spectral line or the broad spectral continuum. Intensity interferometry directly provides the modulus (but not phase) of any spatial frequency component of the source image; for this reason a full image reconstruction requires phase retrieval techniques. This is feasible if sufficient coverage of the interferometric (u, v)-plane is available, as was verified through numerical simulations. Laboratory and field experiments are in progress; test telescopes have been erected, intensity interferometry has been achieved in the laboratory, and first full-scale tests of connecting large Cherenkov telescopes have been carried out. This paper reviews this interferometric method in view of the new possibilities offered by arrays of air Cherenkov telescopes, and outlines observational programs that should become realistic already in the rather near future. (C) 2012 Elsevier B.V. All rights reserved.
  •  
21.
  • Eckner, Christopher, et al. (författare)
  • Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference (ICRC2021) - GAI - Gamma Ray Indirect. - Trieste, Italy : Sissa Medialab. - 1824-8039. ; 395
  • Konferensbidrag (refereegranskat)abstract
    • High-energy gamma rays are promising tools to constrain or reveal the nature of dark matter, in particular Weakly Interacting Massive Particles. Being well into its pre-construction phase, the Cherenkov Telescope Array (CTA) will soon probe the sky in the 20 GeV - 300 TeV energy range. Thanks to its improved energy and angular resolutions as well as significantly larger effective area when compared to the current generation of Cherenkov telescopes, CTA is expected to probe heavier dark matter, with unprecedented sensitivity, reaching the thermal annihilation cross-section at 1 TeV. This talk will summarise the planned dark matter search strategies with CTA, focusing on the signal from the Galactic centre. As observed with the Fermi LAT at lower energies, this region is rather complex and CTA will be the first ground-based observatory sensitive to the large scale diffuse astrophysical emission from that region. We report on the collaboration effort to study the impact of such extended astrophysical backgrounds on the dark matter search, based on Fermi-LAT data in order to guide our observational strategies, taking into account various sources of systematic uncertainty. © Copyright owned by the author(s) under the terms of the Creative Commons.
  •  
22.
  • Fendt, Ch, et al. (författare)
  • Magnetic deformation of the white dwarf surface structure
  • 2000
  • Ingår i: Astronomical Notes - Astronomische Nachrichten. - 0004-6337. ; 321:3, s. 193-206
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of strong, large-scale magnetic fields on the structure and temperature distribution in white dwarf atmospheres is investigated. Magnetic fields may provide an additional component of pressure support, thus possibly inflating the atmosphere compared to the non-magnetic case. Since the magnetic forces are not isotropic, atmospheric properties may significantly deviate from spherical symmetry. In this paper the magnetohydrostatic equilibrium is calculated numerically in the radial direction for either for small deviations from different assumptions for the poloidal current distribution. We generally find indication that the scale height of the magnetic white dwarf atmosphere enlarges with magnetic field strength and/or poloidal current strength. This is in qualitative agreement with recent spectropolarimetric observations of Grw+10°8247. Quantitatively, we find for e.g. a mean surface poloidal field strength of 100 MG and a toroidal field strength of 2-10 MG an increase of scale height by a factor of 10. This is indicating that already a small deviation from the initial force-free dipolar magnetic field may lead to observable effects. We further propose the method of finite elements for the solution of the two-dimensional magnetohydrostatic equilibrium including radiation transport in the diffusive approximation. We present and discuss preliminary solutions, again indicating on an expansion of the magnetized atmosphere.
  •  
23.
  • Gueta, O., et al. (författare)
  • The Cherenkov Telescope Array: layout, design and performance
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference (ICRC2021) - GAI - Gamma Ray Indirect. - Trieste, Italy : Sissa Medialab. - 1824-8039. ; 395
  • Konferensbidrag (refereegranskat)abstract
    • The Cherenkov Telescope Array (CTA) will be the next generation very-high-energy gamma-ray observatory. CTA is expected to provide substantial improvement in accuracy and sensitivity with respect to existing instruments thanks to a tenfold increase in the number of telescopes and their state-of-the-art design. Detailed Monte Carlo simulations are used to further optimise the number of telescopes and the array layout, and to estimate the observatory performance using updated models of the selected telescope designs. These studies are presented in this contribution for the two CTA stations located on the island of La Palma (Spain) and near Paranal (Chile) and for different operation and observation conditions. © Copyright owned by the author(s) under the terms of the Creative Commons.
  •  
24.
  • Hassan, T., et al. (författare)
  • Performance of a proposed event-type based analysis for the Cherenkov Telescope Array
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference (ICRC2021) - GAI - Gamma Ray Indirect. - Trieste, Italy : Sissa Medialab. - 1824-8039. ; 395
  • Konferensbidrag (refereegranskat)abstract
    • The Cherenkov Telescope Array (CTA) will be the next-generation observatory in the field of very-high-energy (20 GeV to 300 TeV) gamma-ray astroparticle physics. Classically, data analysis in the field maximizes sensitivity by applying quality cuts on the data acquired. These cuts, optimized using Monte Carlo simulations, select higher quality events from the initial dataset. Subsequent steps of the analysis typically use the surviving events to calculate one set of instrument response functions (IRFs). An alternative approach is the use of event types, as implemented in experiments such as the Fermi-LAT. In this approach, events are divided into sub-samples based on their reconstruction quality, and a set of IRFs is calculated for each sub-sample. The sub-samples are then combined in a joint analysis, treating them as independent observations. This leads to an improvement in performance parameters such as sensitivity, angular and energy resolution. Data loss is reduced since lower quality events are included in the analysis as well, rather than discarded. In this study, machine learning methods will be used to classify events according to their expected angular reconstruction quality. We will report the impact on CTA high-level performance when applying such an event-type classification, compared to the classical procedure. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy