SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ebeling Anne) "

Sökning: WFRF:(Ebeling Anne)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marouli, Eirini, et al. (författare)
  • Rare and low-frequency coding variants alter human adult height
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 542:7640, s. 186-190
  • Tidskriftsartikel (refereegranskat)abstract
    • Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
  •  
2.
  • Hines, Jes, et al. (författare)
  • Towards an integration of biodiversity-ecosystem functioning and food web theory to evaluate relationships between multiple ecosystem services
  • 2015
  • Ingår i: Advances in Ecological Research. - : Elsevier. - 0065-2504. ; 53, s. 161-199
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecosystem responses to changes in species diversity are often studied individually. However, changes in species diversity can simultaneously influence multiple interdependent ecosystem functions. Therefore, an important challenge is to determine when and how changes in species diversity that influence one function will also drive changes in other functions. By providing the underlying structure of species interactions, ecological networks can quantify connections between biodiversity and multiple ecosystem functions. Here, we review parallels in the conceptual development of biodiversity- ecosystem functioning (BEF) and food web theory (FWT) research. Subsequently, we evaluate three common principles that unite these two research areas by explaining the patterns, concentrations, and direction of the flux of nutrients and energy through the species in diverse interaction webs. We give examples of combined BEF-FWT approaches that can be used to identify vulnerable species and habitats and to evaluate links that drive trade-offs between multiple ecosystems functions. These combined approaches reflect promising trends towards better management of biodiversity in landscapes that provide essential ecosystem services supporting human well-being.
  •  
3.
  • Manning, Peter, et al. (författare)
  • Transferring biodiversity-ecosystem function research to the management of 'real-world' ecosystems
  • 2019
  • Ingår i: Mechanisms underlying the relationship between biodiversity and ecosystem function. - London : Elsevier. - 9780081029121 - 9780081029138 ; , s. 323-356
  • Bokkapitel (refereegranskat)abstract
    • Biodiversity-ecosystem functioning (BEF) research grew rapidly following concerns that biodiversity loss would negatively affect ecosystem functions and the ecosystem services they underpin. However, despite evidence that biodiversity strongly affects ecosystem functioning, the influence of BEF research upon policy and the management of 'real-world' ecosystems, i.e., semi-natural habitats and agroecosystems, has been limited. Here, we address this issue by classifying BEF research into three clusters based on the degree of human control over species composition and the spatial scale, in terms of grain, of the study, and discussing how the research of each cluster is best suited to inform particular fields of ecosystem management. Research in the first cluster, small-grain highly controlled studies, is best able to provide general insights into mechanisms and to inform the management of species-poor and highly managed systems such as croplands, plantations, and the restoration of heavily degraded ecosystems. Research from the second cluster, small-grain observational studies, and species removal and addition studies, may allow for direct predictions of the impacts of species loss in specific semi-natural ecosystems. Research in the third cluster, large-grain uncontrolled studies, may best inform landscape-scale management and national-scale policy. We discuss barriers to transfer within each cluster and suggest how new research and knowledge exchange mechanisms may overcome these challenges. To meet the potential for BEF research to address global challenges, we recommend transdisciplinary research that goes beyond these current clusters and considers the social-ecological context of the ecosystems in which BEF knowledge is generated. This requires recognizing the social and economic value of biodiversity for ecosystem services at scales, and in units, that matter to land managers and policy makers.
  •  
4.
  • Ochoa-Hueso, Raúl, et al. (författare)
  • Microbial processing of plant remains is co-limited by multiple nutrients in global grasslands
  • 2020
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 26:8, s. 4572-4582
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial processing of aggregate-unprotected organic matter inputs is key for soil fertility, long-term ecosystem carbon and nutrient sequestration and sustainable agriculture. We investigated the effects of adding multiple nutrients (nitrogen, phosphorus and potassium plus nine essential macro- and micro-nutrients) on decomposition and biochemical transformation of standard plant materials buried in 21 grasslands from four continents. Addition of multiple nutrients weakly but consistently increased decomposition and biochemical transformation of plant remains during the peak-season, concurrent with changes in microbial exoenzymatic activity. Higher mean annual precipitation and lower mean annual temperature were the main climatic drivers of higher decomposition rates, while biochemical transformation of plant remains was negatively related to temperature of the wettest quarter. Nutrients enhanced decomposition most at cool, high rainfall sites, indicating that in a warmer and drier future fertilized grassland soils will have an even more limited potential for microbial processing of plant remains.
  •  
5.
  • Pantazis, N, et al. (författare)
  • Determining the likely place of HIV acquisition for migrants in Europe combining subject-specific information and biomarkers data
  • 2019
  • Ingår i: Statistical methods in medical research. - : SAGE Publications. - 1477-0334 .- 0962-2802. ; 28:7, s. 1979-1997
  • Tidskriftsartikel (refereegranskat)abstract
    • In most HIV-positive individuals, infection time is only known to lie between the time an individual started being at risk for HIV and diagnosis time. However, a more accurate estimate of infection time is very important in certain cases. For example, one of the objectives of the Advancing Migrant Access to Health Services in Europe (aMASE) study was to determine if HIV-positive migrants, diagnosed in Europe, were infected pre- or post-migration. We propose a method to derive subject-specific estimates of unknown infection times using information from HIV biomarkers’ measurements, demographic, clinical, and behavioral data. We assume that CD4 cell count (CD4) and HIV-RNA viral load trends after HIV infection follow a bivariate linear mixed model. Using post-diagnosis CD4 and viral load measurements and applying the Bayes’ rule, we derived the posterior distribution of the HIV infection time, whereas the prior distribution was informed by AIDS status at diagnosis and behavioral data. Parameters of the CD4–viral load and time-to-AIDS models were estimated using data from a large study of individuals with known HIV infection times (CASCADE). Simulations showed substantial predictive ability (e.g. 84% of the infections were correctly classified as pre- or post-migration). Application to the aMASE study ( n = 2009) showed that 47% of African migrants and 67% to 72% of migrants from other regions were most likely infected post-migration. Applying a Bayesian method based on bivariate modeling of CD4 and viral load, and subject-specific information, we found that the majority of HIV-positive migrants in aMASE were most likely infected after their migration to Europe.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy