SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Edsbagge Josefina) "

Sökning: WFRF:(Edsbagge Josefina)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brolén, Gabriella, et al. (författare)
  • Signals From the Embryonic Mouse Pancreas Induce Differentiation of Human Embryonic Stem Cells Into Insulin-Producing {beta}-Cell-Like Cells.
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 54:10, s. 2867-2874
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent success in restoring normoglycemia in type 1 diabetes by islet cell transplantation indicates that cell replacement therapy of this severe disease is achievable. However, the severe lack of donor islets has increased the demand for alternative sources of beta-cells, such as adult and embryonic stem cells. Here, we investigate the potential of human embryonic stem cells (hESCs) to differentiate into beta-cells. Spontaneous differentiation of hESCs under two-dimensional growth conditions resulted in differentiation of Pdx1(+)/Foxa2(+) pancreatic progenitors and Pdx1(+)/Isl1(+) endocrine progenitors but no insulin-producing cells. However, cotransplantation of differentiated hESCs with the dorsal pancreas, but not with the liver or telencephalon, from mouse embryos resulted in differentiation of beta-cell-like cell clusters. Comparative analysis of the basic characteristics of hESC-derived insulin(+) cell clusters with human adult islets demonstrated that the insulin(+) cells share important features with normal beta-cells, such as synthesis (proinsulin) and processing (C-peptide) of insulin and nuclear localization of key beta-cell transcription factors, including Foxa2, Pdx1, and Isl1.
  •  
2.
  •  
3.
  • Edsbagge, Josefina, 1973 (författare)
  • The significance of blood vessels in organogenesis and cadherins in exploratory behaviour
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Organogenesis of epithelial organs requires interaction between epithelial andmesenchymal tissues. In pancreas development three different mesenchymal derivedstructures, the notochord, the endothelial cells and the splanchnic mesenchyme inducespecification, growth and further differentiation of the pancreatic epithelium.Previously, N-cadherin deficient embryos were shown to suffer from agenesis ofthe dorsal pancreas due to apoptosis of the pancreatic mesenchyme. However, byexpressing N- and E-cadherin selectively in the heart, the pancreatic phenotype was shownto be secondary to the non-functional cardiac- and vascular-system in N-cadherin-/-embryos. In addition, plasma from wild-type embryos rescued dorsal pancreas formationin N-cadherin-/- explants, suggesting factors from the circulation to be involved inpancreatic ontogeny. Recently, sphingosine-1-phosphate receptor-1 was shown to berequired for proper recruitment of vascular smooth muscle cells to the aortic wall.Vascular smooth muscle cells and dorsal pancreatic mesenchyme may originate from acommon cellular source, the splanchnic mesenchyme, and migrate to endothelial andepithelial cells, respectively, in close vicinity, suggesting that they may be regulated bysimilar developmental regulatory pathways. Consequently, the ligand, a blood bornesphingolipid metabolite, sphingosine-1-phosphate, may be involved in pancreas ontogenyas well. Indeed, the sphingosine-1-phosphate rescued dorsal pancreas in N-cadherin-/-explants by inducing proliferation of the mesenchyme. To clarify the requirement forsphingosine-1-phosphate in pancreas development, embryos deficient in sphingosine-1-phosphate receptor-1 were analysed. Whereas initial development of dorsal and ventralpancreas proceeded normally, obvious morphological changes of the dorsal pancreaticepithelium were observed at later stages, indicating defective mesenchymal-to-epithelialinteractions. The sphingosine-1-phosphate receptor-1 was mainly expressed in endothelialcells, suggesting that sphingosine-1-phosphate signals to the mesenchyme via endothelialcells. Altogether, we show for the first time that vascular function and spingosine-1-phosphate-mediating signalling regulate pancreas ontogeny by inducing mesenchymal-toepithelialsignalling.Cadherins are cell-to-cell adhesion molecules localised at the synaptic junctions,mediating synaptogenesis and neuronal path finding during development. By using theCre/loxP-system, an in vivo model was established where a dominant negative cadherinwas expressed selectively in the neurons of the central nervous system in the adult mouse.Cadherins role in neural plasticity and behaviour was analysed and demonstrated normalsynaptic transmission, long term potentiation, spatial learning and anxiety responses, whilerearing behaviour, a component in exploration was significantly reduced. Datademonstrate, for the first time, a functional role for cadherins in modifying rearing andexploratory behaviour in vivo.
  •  
4.
  • Edsbagge, Josefina, 1973, et al. (författare)
  • Vascular function and sphingosine-1-phosphate regulate development of the dorsal pancreatic mesenchyme
  • 2005
  • Ingår i: DEVELOPMENT. - : The Company of Biologists. - 0950-1991 .- 1477-9129. ; 132:5, s. 1085-1092
  • Tidskriftsartikel (refereegranskat)abstract
    • Early growth and differentiation of the pancreatic endoderm is regulated by soluble factors from the pancreatic mesenchyme. Previously, we demonstrated that N-cadherin-deficient mice lack a dorsal pancreas, due to a critical role of N-cadherin in dorsal pancreatic mesenchymal cell survival. Here, we show that restoring cardiac and circulatory function in N-cadherin null mice by cardiac-specific expression of N-cadherin, rescues formation of the dorsal pancreas, indicating that the phenotype is secondary to defects related to cardiac/vascular function. Based on this observation, we demonstrate that soluble factors present in plasma, such as sphingosine-1-phosphate, rescue formation of the dorsal pancreas in N-cadherin-deficient mice. We also show that sphingosine-1-phosphate indirectly promotes budding of the pancreatic endoderm by stimulating pancreatic mesenchymal cell proliferation. Finally, we identify sphingosine-1-phosphate receptors within the mesenchyme and show that pertussis toxin blocks the sphingosine-1-phosphate-induced actions, suggesting the involvement of G-protein-coupled sphingosine-1-phosphate receptors. Thus,we propose a new model where blood vessel-derived sphingosine-1-phosphate stimulates growth and budding of the dorsal pancreatic endoderm by induction of mesenchymal cell proliferation.
  •  
5.
  • Holmgren, Gustav, et al. (författare)
  • Long-Term Chronic Toxicity Testing Using Human Pluripotent Stem Cell-Derived Hepatocytes
  • 2014
  • Ingår i: Drug Metabolism and Disposition. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0090-9556 .- 1521-009X. ; 42:9, s. 1401-1406
  • Tidskriftsartikel (refereegranskat)abstract
    • Human pluripotent stem cells (hPSC) have the potential to become important tools for the establishment of new models for in vitro drug testing of, for example, toxicity and pharmacological effects. Late-stage attrition in the pharmaceutical industry is to a large extent caused by selection of drug candidates using nonpredictive preclinical models that are not clinically relevant. The current hepatic in vivo and in vitro models show clear limitations, especially for studies of chronic hepatotoxicity. For these reasons, we evaluated the potential of using hPSC-derived hepatocytes for long-term exposure to toxic drugs. The differentiated hepatocytes were incubated with hepatotoxic compounds for up to 14 days, using a repeated-dose approach. The hPSC-derived hepatocytes became more sensitive to the toxic compounds after extended exposures and, in addition to conventional cytotoxicity, evidence of phospholipidosis and steatosis was also observed in the cells. This is, to the best of our knowledge, the first report of a long-term toxicity study using hPSC-derived hepatocytes, and the observations support further development and validation of hPSC-based toxicity models for evaluating novel drugs, chemicals, and cosmetics.
  •  
6.
  • Kia, Richard, et al. (författare)
  • MicroRNA-122 : a novel hepatocyte-enriched in vitro marker of drug-induced cellular toxicity
  • 2015
  • Ingår i: Toxicological Sciences. - : Oxford University Press. - 1096-6080 .- 1096-0929. ; 144:1, s. 173-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging hepatic models for the study of drug-induced toxicity include pluripotent stem cell-derived hepatocyte-like cells (HLCs) and complex hepatocyte-non-parenchymal cellular coculture to mimic the complex multicellular interactions that recapitulate the niche environment in the human liver. However, a specific marker of hepatocyte perturbation, required to discriminate hepatocyte damage from non-specific cellular toxicity contributed by non-hepatocyte cell types or immature differentiated cells is currently lacking, as the cytotoxicity assays routinely used in in vitro toxicology research depend on intracellular molecules which are ubiquitously present in all eukaryotic cell types. In this study, we demonstrate that microRNA-122 (miR-122) detection in cell culture media can be used as a hepatocyte-enriched in vitro marker of drug-induced toxicity in homogeneous cultures of hepatic cells, and a cell-specific marker of toxicity of hepatic cells in heterogeneous cultures such as HLCs generated from various differentiation protocols and pluripotent stem cell lines, where conventional cytotoxicity assays using generic cellular markers may not be appropriate. We show that the sensitivity of the miR-122 cytotoxicity assay is similar to conventional assays that measure lactate dehydrogenase activity and intracellular adenosine triphosphate when applied in hepatic models with high levels of intracellular miR-122, and can be multiplexed with other assays. MiR-122 as a biomarker also has the potential to bridge results in in vitro experiments to in vivo animal models and human samples using the same assay, and to link findings from clinical studies in determining the relevance of in vitro models being developed for the study of drug-induced liver injury.
  •  
7.
  • Mandenius, Carl-Fredrik, et al. (författare)
  • Toward Preclinical Predictive Drug Testing for Metabolism and Hepatotoxicity by Using In Vitro Models Derived from Human Embryonic Stem Cells and Human Cell Lines - A Report on the Vitrocellomics EU-project
  • 2011
  • Ingår i: ATLA-ALTERNATIVES TO LABORATORY ANIMALS. - : Fund for Replacement of Animals in Medical Experiments; 1999. - 0261-1929 .- 2632-3559. ; 39:2, s. 147-171
  • Tidskriftsartikel (refereegranskat)abstract
    • Drug-induced liver injury is a common reason for drug attrition in late clinical phases, and even for post-launch withdrawals. As a consequence, there is a broad consensus in the pharmaceutical industry, and within regulatory authorities, that a significant improvement of the current in vitro test methodologies for accurate assessment and prediction of such adverse effects is needed. For this purpose, appropriate in vivo-like hepatic in vitro models are necessary, in addition to novel sources of human hepatocytes. In this report, we describe recent and ongoing research toward the use of human embryonic stem cell (hESC)-derived hepatic cells, in conjunction with new and improved test methods, for evaluating drug metabolism and hepatotoxicity. Recent progress on the directed differentiation of human embryonic stem cells to the functional hepatic phenotype is reported, as well as the development and adaptation of bioreactors and toxicity assay technologies for the testing of hepatic cells. The aim of achieving a testing platform for metabolism and hepatotoxicity assessment, based on hESC-derived hepatic cells, has advanced markedly in the last 2-3 years. However, great challenges still remain, before such new test systems could be routinely used by the industry. In particular, we give an overview of results from the Vitrocellomics project (EU Framework 6) and discuss these in relation to the current state-of-the-art and the remaining difficulties, with suggestions on how to proceed before such in vitro systems can be implemented in industrial discovery and development settings and in regulatory acceptance.
  •  
8.
  • Pradip, Arvind, et al. (författare)
  • High Content Analysis of Human Pluripotent Stem Cell Derived Hepatocytes Reveals Drug Induced Steatosis and Phospholipidosis
  • 2016
  • Ingår i: Stem Cells International. - : Hindawi Publishing Corporation. - 1687-9678 .- 1687-966X. ; 2016
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatotoxicity is one of the most cited reasons for withdrawal of approved drugs from the market. The use of nonclinically relevant in vitro and in vivo testing systems contributes to the high attrition rates. Recent advances in differentiating human induced pluripotent stem cells (hiPSCs) into pure cultures of hepatocyte-like cells expressing functional drug metabolizing enzymes open up possibilities for novel, more relevant human cell based toxicity models. The present study aimed to investigate the use of hiPSC derived hepatocytes for conducting mechanistic toxicity testing by image based high content analysis (HCA). The hiPSC derived hepatocytes were exposed to drugs known to cause hepatotoxicity through steatosis and phospholipidosis, measuring several endpoints representing different mechanisms involved in drug induced hepatotoxicity. The hiPSC derived hepatocytes were benchmarked to the HepG2 cell line and generated robust HCA data with low imprecision between plates and batches. The different parameters measured were detected at subcytotoxic concentrations and the order of which the compounds were categorized (as severe, moderate, mild, or nontoxic) based on the degree of injury at isomolar concentration corresponded to previously published data. Taken together, the present study shows how hiPSC derived hepatocytes can be used as a platform for screening drug induced hepatotoxicity by HCA.
  •  
9.
  • Ulvestad, Maria, et al. (författare)
  • Drug metabolizing enzyme and transporter protein profiles of hepatocytes derived from human embryonic and induced pluripotent stem cells
  • 2013
  • Ingår i: Biochemical Pharmacology. - : Elsevier. - 0006-2952 .- 1356-1839 .- 1873-2968. ; 86:5, s. 691-702
  • Tidskriftsartikel (refereegranskat)abstract
    • Human embryonic and induced pluripotent stem cell-derived hepatocytes (hESC-Hep and hiPSC-Hep) have the potential to provide relevant human in vitro model systems for toxicity testing and drug discovery studies. In this study, the expression and function of important drug metabolizing cytochrome P450 (CYP) enzymes and transporter proteins in hESC-Hep and hiPSC-Hep were compared to cryopreserved human primary hepatocytes (hphep) and HepG2 cells. Overall, CYP activities in hESC-Hep and hiPSC-Hep were much lower than in hphep cultured for 4 h, but CYP1A and 3A activities were comparable to levels in hphep cultured for 48 h (CYP1A: 35% and 26% of 48 h hphep, respectively; CYP3A: 80% and 440% of 48 h hphep, respectively). Importantly, in hESC-Hep and hiPSC-Hep, CYP activities were stable or increasing for at least one week in culture which was in contrast to the rapid loss of CYP activities in cultured hphep between 4 and 48 h after plating. With regard to transporters, in hESC-Hep and hiPSC-Hep, pronounced NTCP activity (17% and 29% of 4 h hphep, respectively) and moderate BSEP activity (6% and 8% of 4 h hphep, respectively) were observed. Analyses of mRNA expression and immunocytochemistry supported the observed CYP and transporter activities and showed expression of additional CYPs and transporters. In conclusion, the stable expression and function of CYPs and transporters in hESC-Hep and hiPSC-Hep for at least one week opens up the possibility to reproducibly perform long term and extensive studies, e.g. chronic toxicity testing, in a stem cell-derived hepatic system. (C) 2013 Elsevier Inc. All rights reserved.
  •  
10.
  • Wolfhagen Sand, Fredrik, et al. (författare)
  • Growth-limiting role of endothelial cells in endoderm development
  • 2011
  • Ingår i: Developmental Biology. - : Academic Press. - 0012-1606 .- 1095-564X. ; 352:2, s. 267-277
  • Tidskriftsartikel (refereegranskat)abstract
    • Endoderm development is dependent on inductive signals from different structures in close vicinity, including the notochord, lateral plate mesoderm and endothelial cells. Recently, we demonstrated that a functional vascular system is necessary for proper pancreas development, and that sphingosine-1-phosphate (S1P) exhibits the traits of a blood vessel-derived molecule involved in early pancreas morphogenesis. To examine whether S1P(1)-signaling plays a more general role in endoderm development, S1P(1)-deficient mice were analyzed. S1P(1) ablation results in compromised growth of several foregut-derived organs, including the stomach, dorsal and ventral pancreas and liver. Within the developing pancreas the reduction in organ size was due to deficient proliferation of Pdx1(+) pancreatic progenitors, whereas endocrine cell differentiation was unaffected. Ablation of endothelial cells in vitro did not mimic the S1P(1) phenotype, instead, increased organ size and hyperbranching were observed. Consistent with a negative role for endothelial cells in endoderm organ expansion, excessive vasculature was discovered in S1P(1)-deficient embryos. Altogether, our results show that endothelial cell hyperplasia negatively influences organ development in several foregut-derived organs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (9)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (9)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Edsbagge, Josefina (6)
Edsbagge, Josefina, ... (4)
Björquist, Petter (3)
Küppers-Munther, Bar ... (3)
Holmgren, Gustav (3)
Semb, Henrik (2)
visa fler...
Andersson, Tommy B. (2)
Sartipy, Peter (2)
Johansson, Inger (2)
Jacobsson, Susanna (2)
Brolén, Gabriella (2)
Ingelman-Sundberg, M ... (2)
Semb, Henrik, 1959 (2)
Wigström, Holger, 19 ... (1)
Ingelman-Sundberg, M (1)
Ahlgren, Ulf (1)
Hörnblad, Andreas (1)
Malik, Hassan (1)
Park, B Kevin (1)
Ståhlberg, Anders (1)
Johansson, Jenny (1)
Steel, Daniella (1)
Mandenius, Carl-Fred ... (1)
Mohammed, Abdul H (1)
Johansson, Jenny K. (1)
Asplund, Annika (1)
Bjorquist, P. (1)
Dor, Yuval (1)
Barragan, I (1)
Lorén, Christina (1)
Andersson, B Tommy, ... (1)
Coecke, Sandra (1)
Heinzle, Elmar (1)
Heins, Nico (1)
Fredriksson, J Magnu ... (1)
Zhang, Fang (1)
Sjögren, Anna-Karin, ... (1)
Synnergren, Jane, 19 ... (1)
Chesne, Christophe (1)
Gerlach, Jörg C. (1)
Zeilinger, Katrin (1)
Luo, Yang (1)
Zhu, Shunwei (1)
Xiao, Min-Yi, 1964 (1)
Esni, Farzad, 1969 (1)
Radice, Glenn L. (1)
Sabirsh, A (1)
Nordell, Pär (1)
Goldring, Chris E. P ... (1)
Rehnström, Marie (1)
visa färre...
Lärosäte
Karolinska Institutet (5)
Göteborgs universitet (4)
Högskolan i Skövde (4)
Lunds universitet (2)
Umeå universitet (1)
Linköpings universitet (1)
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (7)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy