SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ellegren Hans) "

Sökning: WFRF:(Ellegren Hans)

  • Resultat 1-25 av 260
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Backström, Niclas, et al. (författare)
  • Genetic mapping in a natural population of collared flycatchers (Ficedula albicollis) : Conserved synteny but gene order rearrangements on the avian Z chromosome
  • 2006
  • Ingår i: Genetics. - : Oxford University Press (OUP). - 0016-6731 .- 1943-2631. ; 174:1, s. 377-386
  • Tidskriftsartikel (refereegranskat)abstract
    • Data from completely sequenced genomes are likely to open the way for novel studies of the genetics of nonmodel organisms, in particular when it comes to the identification and analysis of genes responsible for traits that are under selection in natural populations. Here we use the draft sequence of the chicken genome as a starting point for linkage mapping in a wild bird species, the collared flycatcher-one of the most well-studied avian species in ecological and evolutionary research. A pedigree of 365 flycatchers was established and genotyped for single nucleotide polymorphisms in 23 genes selected from (and spread over most of) the chicken Z chromosome. All genes were also found to be located on the Z chromosome in the collared flycatcher, confirming conserved synteny at the level of gene content across distantly related avian lineages. This high degree of conservation mimics the situation seen for the mammalian X chromosome and may thus be a general feature in sex chromosome evolution, irrespective of whether there is male or female heterogamety. Alternatively, such unprecedented chromosomal conservation may be characteristic of most chromosomes in avian genome evolution. However, several internal rearrangements were observed, meaning that the transfer of map information from chicken to nonmodel bird species cannot always assume conserved gene orders. Interestingly, the rate of recombination on the Z chromosome of collared flycatchers was only similar to 50% that of chicken, challenging the widely held view that birds generally have high recombination rates.
  •  
2.
  •  
3.
  • Warren, Wesley C, et al. (författare)
  • The genome of a songbird
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 464:7289, s. 757-762
  • Tidskriftsartikel (refereegranskat)abstract
    • The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.
  •  
4.
  •  
5.
  • Adolfsson, Sofia, et al. (författare)
  • Lack of Dosage Compensation Accompanies the Arrested Stage of Sex Chromosome Evolution in Ostriches
  • 2013
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 30:4, s. 806-810
  • Tidskriftsartikel (refereegranskat)abstract
    • Sex chromosome evolution is usually seen as a process that, once initiated, will inevitably progress toward an advanced stage of degeneration of the nonrecombining chromosome. However, despite evidence that avian sex chromosome evolution was initiated > 100 Ma, ratite birds have been trapped in an arrested stage of sex chromosome divergence. We performed RNA sequencing of several tissues from male and female ostriches and assembled the transcriptome de novo. A total of 315 Z-linked genes fell into two categories: those that have equal expression level in the two sexes (for which Z-W recombination still occurs) and those that have a 2-fold excess of male expression (for which Z-W recombination has ceased). We suggest that failure to evolve dosage compensation has constrained sex chromosome divergence in this basal avian lineage. Our results indicate that dosage compensation is a prerequisite for, not only a consequence of, sex chromosome evolution.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Anderung, Cecilia, et al. (författare)
  • Prehistoric contacts over the Straits of Gibraltar indicated by genetic analysis of Iberian Bronze Age cattle
  • 2005
  • Ingår i: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 102:24, s. 8431-8435
  • Tidskriftsartikel (refereegranskat)abstract
    • The geographic situation of the Iberian Peninsula makes it a natural link between Europe and North Africa. However, it is a matter of debate to what extent African influences via the Straits Gibraltar have affected Iberia's prehistoric development. Because early African pastoralist communities were dedicated to cattle breeding, a possible means to detect prehistoric African–Iberian contacts might be to analyze the origin of cattle breeds on the Iberian Peninsula. Some contemporary Iberian cattle breeds show a mtDNA haplotype, T1, that is characteristic to African breeds, generally explained as being the result of the Muslim expansion of the 8th century A.D., and of modern imports. To test a possible earlier African influence, we analyzed mtDNA of Bronze Age cattle from the Portalón cave at the Atapuerca site in northern Spain. Although the majority of samples showed the haplotype T3 that dominates among European breeds of today, the T1 haplotype was found in one specimen radiocarbon dated 1800 calibrated years B.C. Accepting T1 as being of African origin, this result indicates prehistoric African–Iberian contacts and lends support to archaeological finds linking early African and Iberian cultures. We also found a wild ox haplotype in the Iberian Bronze Age sample, reflecting local hybridization or backcrossing or that aurochs were hunted by these farming cultures.
  •  
11.
  •  
12.
  • Axelsson, Erik, 1975- (författare)
  • Comparative Genomics in Birds
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • To shed light on forces that shape the molecular evolution of bird genomes, and in turn avian adaptations, comparative analyses of avian DNA sequences are important. Moreover, contrasting findings in birds to those of other organisms will lend a clearer view on general aspects of molecular evolution. However, few such analyses have been conducted in birds. Progress is presented in this thesis.Theories predict a reduction in the mutation rate of the Z chromosome as the harmful effects of recessive mutations are exposed in female birds. We find no evidence for this. Instead, the substitution rates of sex chromosomes and autosomes are largely compatible with expectations from male-biased mutation. This suggests that a majority of mutations arise during DNA replication.Substitution rates also vary across chicken autosomes. For instance, microchromosomes accumulate ~20% more substitutions than macrochromosomes. We show that a majority of the autosomal variation in substitution rate can be accounted for by GC content, mainly due to the incidence of mutable CpG-dinucleotides.Sequence comparisons also show that the pattern of nucleotide substitution varies in the chicken genome and this reinforces regional differences in base composition. The level of selective constraint in at least some avian lineages is higher than in mammalian lineages as indicated by low dN/dS – ratios. Larger historical population sizes of birds relative to mammals could explain this observation. Within the avian genome, the dN/dS is lower for genes on micro- than macrochromosomes, potentially owing to a higher incidence of house-keeping genes in the former category.Contrasting data on non-synonymous and synonymous substitution for divergence and polymorphism shows that positive selection has contributed more to the evolution of Z-linked than autosomal genes. This is likely explained by the full exposure of beneficial recessive mutations on Z when in female birds.
  •  
13.
  •  
14.
  • Axelsson, Erik, et al. (författare)
  • Comparison of the chicken and turkey genomes reveals a higher rate of nucleotide divergence on microchromosomes than macrochromosomes.
  • 2005
  • Ingår i: Genome Res. - 1088-9051. ; 15:1, s. 120-5
  • Tidskriftsartikel (refereegranskat)abstract
    • A distinctive feature of the avian genome is the large heterogeneity in the size of chromosomes, which are usually classified into a small number of macrochromosomes and numerous microchromosomes. These chromosome classes show characteristic differences in a number of interrelated features that could potentially affect the rate of sequence evolution, such as GC content, gene density, and recombination rate. We studied the effects of these factors by analyzing patterns of nucleotide substitution in two sets of chicken-turkey sequence alignments. First, in a set of 67 orthologous introns, divergence was significantly higher in microchromosomes (chromosomes 11-38; 11.7% divergence) than in both macrochromosomes (chromosomes 1-5; 9.9% divergence; P = 0.016) and intermediate-sized chromosomes (chromosomes 6-10; 9.5% divergence; P = 0.026). At least part of this difference was due to the higher incidence of CpG sites on microchromosomes. Second, using 155 orthologous coding sequences we noted a similar pattern, in which synonymous substitution rates on microchromosomes (13.1%) were significantly higher than were rates on macrochromosomes (10.3%; P = 0.024). Broadly assuming neutrality of introns and synonymous sites, or constraints on such sequences do not differ between chromosomal classes, these observations imply that microchromosomal genes are exposed to more germ line mutations than those on other chromosomes. We also find that dN/dS ratios for genes located on microchromosomes (average, 0.094) are significantly lower than those of macrochromosomes (average, 0.185; P = 0.025), suggesting that the proteins of genes on microchromosomes are under greater evolutionary constraint.
  •  
15.
  •  
16.
  • Axelsson, Erik, et al. (författare)
  • Natural selection in protein-coding genes expressed in avian brain
  • 2008
  • Ingår i: Molecular Ecology. - 0962-1083 .- 1365-294X. ; 17:12, s. 3008-3017
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolution of birds from theropod dinosaurs took place approximately 150 million years ago, and was associated with a number of specific adaptations that are still evident among extant birds, including feathers, song and extravagant secondary sexual characteristics. Knowledge about the molecular evolutionary background to such adaptations is lacking. Here, we analyse the evolution of > 5000 protein-coding gene sequences expressed in zebra finch brain by comparison to orthologous sequences in chicken. Mean d(N)/d(S) is 0.085 and genes with their maximal expression in the eye and central nervous system have the lowest mean d(N)/d(S) value, while those expressed in digestive and reproductive tissues exhibit the highest. We find that fast-evolving genes (those which have higher than expected rate of nonsynonymous substitution, indicative of adaptive evolution) are enriched for biological functions such as fertilization, muscle contraction, defence response, response to stress, wounding and endogenous stimulus, and cell death. After alignment to mammalian orthologues, we identify a catalogue of 228 genes that show a significantly higher rate of protein evolution in the two bird lineages than in mammals. These accelerated bird genes, representing candidates for avian-specific adaptations, include genes implicated in vocal learning and other cognitive processes. Moreover, colouration genes evolve faster in birds than in mammals, which may have been driven by sexual selection for extravagant plumage characteristics.
  •  
17.
  • Axelsson, Erik, et al. (författare)
  • Quantification of Adaptive Evolution of Genes Expressed in Avian Brain and the Population Size Effect on the Efficacy of Selection
  • 2009
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 26:5, s. 1073-1079
  • Tidskriftsartikel (refereegranskat)abstract
    • Whether protein evolution is mainly due to fixation of beneficial alleles by positive selection or to random genetic drift has remained a contentious issue over the years. Here, we use two genomewide polymorphism data sets collected from chicken populations, together with divergence data from >5,000 chicken-zebra finch gene orthologs expressed in brain, to assess the amount of adaptive evolution in protein-coding genes of birds. First, we show that estimates of the fixation index (FI, the ratio of fixed nonsynonymous-to-synonymous changes over the ratio of the corresponding polymorphisms) are highly dependent on the character of the underlying data sets. Second, by using polymorphism data from high-frequency alleles, to avoid the confounding effect of slightly deleterious mutations segregating at low frequency, we estimate that about 20% of amino acid changes have been brought to fixation through positive selection during avian evolution. This estimate is intermediate to that obtained in humans (lower) and flies as well as bacteria (higher), and is consistent with population genetics theory that stipulates a positive relationship between the efficiency of selection and the effective population size. Further, by comparing the FIs for common and all alleles, we estimate that approximate to 20% of nonsynonymous variation segregating in chicken populations represent slightly deleterious mutations, which is less than in Drosophila. Overall, these results highlight the link between the effective population size and positive as well as negative selection.
  •  
18.
  • Backström, Niclas, et al. (författare)
  • A Gene-Based Genetic Linkage Map of the Collared Flycatcher (Ficedula albicollis) Reveals Extensive Synteny and Gene-Order Conservation During 100 Million Years of Avian Evolution
  • 2008
  • Ingår i: Genetics. - : Oxford University Press (OUP). - 0016-6731 .- 1943-2631. ; 179, s. 1479-1495
  • Tidskriftsartikel (refereegranskat)abstract
    • By taking advantage of a recently developed reference markerset for avian genome analysis we have constructed a gene-basedgenetic map of the collared flycatcher, an important "ecologicalmodel" for studies of life-history evolution, sexual selection,speciation, and quantitative genetics. A pedigree of 322 birdsfrom a natural population was genotyped for 384 single nucleotidepolymorphisms (SNPs) from 170 protein-coding genes and 71 microsatellites.Altogether, 147 gene markers and 64 microsatellites form 33linkage groups with a total genetic distance of 1787 cM. Malerecombination rates are, on average, 22% higher than femalerates (total distance 1982 vs. 1627 cM). The ability to anchorthe collared flycatcher map with the chicken genome via thegene-based SNPs revealed an extraordinary degree of both syntenyand gene-order conservation during avian evolution. The greatmajority of chicken chromosomes correspond to a single linkagegroup in collared flycatchers, with only a few cases of inter-and intrachromosomal rearrangements. The rate of chromosomaldiversification, fissions/fusions, and inversions combined isthus considerably lower in birds (0.05/MY) than in mammals (0.6–2.0/MY).A dearth of repeat elements, known to promote chromosomal breakage,in avian genomes may contribute to their stability. The degreeof genome stability is likely to have important consequencesfor general evolutionary patterns and may explain, for example,the comparatively slow rate by which genetic incompatibilityamong lineages of birds evolves.
  •  
19.
  • Backström, Niclas, et al. (författare)
  • A high-density scan of the Z chromosome in ficedula flycatchers reveals candidate loci for diversifying selection
  • 2010
  • Ingår i: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 64:12, s. 3461-3475
  • Tidskriftsartikel (refereegranskat)abstract
    • Theoretical and empirical data suggest that genes located on sex chromosomes may play an important role both for sexually selected traits and for traits involved in the build-up of hybrid incompatibilities. We investigated patterns of genetic variation in 73 genes located on the Z chromosomes of two species of the flycatcher genus Ficedula, the pied flycatcher and the collared flycatcher. Sequence data were evaluated for signs of selection potentially related to genomic differentiation in these young sister species, which hybridize despite reduced fitness of hybrids. Seven loci were significantly more divergent between the two species than expected under neutrality and they also displayed reduced nucleotide diversity, consistent with having been influenced by directional selection. Two of the detected candidate regions contain genes that are associated with plumage coloration in birds. Plumage characteristics play an important role in species recognition in these flycatchers suggesting that the detected genes may have been involved in the evolution of sexual isolation between the species.
  •  
20.
  • Backström, Niclas, et al. (författare)
  • Gene conversion drives the evolution of HINTW, an ampliconic gene on the female-specific avian W chromosome.
  • 2005
  • Ingår i: Mol Biol Evol. - 0737-4038. ; 22:10, s. 1992-9
  • Tidskriftsartikel (refereegranskat)abstract
    • The HINTW gene on the female-specific W chromosome of chicken and other birds is amplified and present in numerous copies. Moreover, as HINTW is distinctly different from its homolog on the Z chromosome (HINTZ), is a candidate gene in avian sex determination, and evolves rapidly under positive selection, it shows several common features to ampliconic and testis-specific genes on the mammalian Y chromosome. A phylogenetic analysis within galliform birds (chicken, turkey, quail, and pheasant) shows that individual HINTW copies within each species are more similar to each other than to gene copies of related species. Such convergent evolution is most easily explained by recurrent events of gene conversion, the rate of which we estimated at 10(-6)-10(-5) per site and generation. A significantly higher GC content of HINTW than of other W-linked genes is consistent with biased gene conversion increasing the fixation probability of mutations involving G and C nucleotides. Furthermore, and as a likely consequence, the neutral substitution rate is almost twice as high in HINTW as in other W-linked genes. The region on W encompassing the HINTW gene cluster is not covered in the initial assembly of the chicken genome, but analysis of raw sequence reads indicates that gene copy number is significantly higher than a previous estimate of 40. While sexual selection is one of several factors that potentially affect the evolution of ampliconic, male-specific genes on the mammalian Y chromosome, data from HINTW provide evidence that gene amplification followed by gene conversion can evolve in female-specific chromosomes in the absence of sexual selection. The presence of multiple and highly similar copies of HINTW may be related to protein function, but, more generally, amplification and conversion offers a means to the avoidance of accumulation of deleterious mutations in nonrecombining chromosomes.
  •  
21.
  • Backström, Niclas, 1969- (författare)
  • Gene Mapping in Ficedula Flycatchers
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In order to get full understanding of how evolution proceeds in natural settings it is necessary to reveal the genetic basis of the phenotypic traits that play a role for individual fitness in different environments. There are a few possible approaches, most of which stem from traditional mapping efforts in domestic animals and other model species. Here we set the stage for gene mapping in natural populations of birds by producing a large number of anchor markers of broad utility for avian genetical research and use these markers to generate a genetic map of the collared flycatcher (Ficedula albicollis). The map reveals a very high degree of synteny and gene order conservation between bird species separated by as much as 100 million years. This is encouraging for later stages of mapping procedures in natural populations since this means that there is a possibility to use the information from already characterized avian genomes to track candidate genes for detailed analysis in non-model species. One interesting aspect of the low degree of rearrangements occurring in the avian genomes is that this could play a role in the low rate of hybridization barriers formed in birds compared to for instance mammals. An analysis of Z-linked gene markers reveals relatively long-range linkage disequilibrium (LD) in collared flycatchers compared to other outbred species but still, LD seems to decay within < 50 kb indicating that > 20.000 markers would be needed to cover the genome in an association scan. A detailed scan of 74 Z-linked genes evenly distributed along the chromosome in both the collared flycatcher and the pied flycatcher (Ficedula hypoleuca) indicates that there are regions that evolve under directional selection, regions that might harbor loci of importance for adaptive divergence and/or hybrid inviability.
  •  
22.
  • Backström, Niclas, et al. (författare)
  • Genomics of natural bird populations : a gene-based set of reference markers evenly spread across the avian genome
  • 2008
  • Ingår i: Molecular Ecology. - 0962-1083 .- 1365-294X. ; 17:4, s. 964-980
  • Tidskriftsartikel (refereegranskat)abstract
    • Although there is growing interest to take genomics into the complex realms of natural populations, there is a general shortage of genomic resources and tools available for wild species. This applies not at least to birds, for which genomic approaches should be helpful to questions such as adaptation, speciation and population genetics. In this study, we describe a genome-wide reference set of conserved avian gene markers, broadly applicable across birds. By aligning protein-coding sequences from the recently assembled chicken genome with orthologous sequences in zebra finch, we identified particularly conserved exonic regions flanking introns of suitable size for subsequent amplification and sequencing. Primers were designed for 242 gene markers evenly distributed across the chicken genome, with a mean inter-marker interval of 4.2 Mb. Between 78% and 93% of the markers amplified a specific product in five species tested (chicken, peregrine falcon, collared flycatcher, great reed warbler and blue tit). Two hundred markers were sequenced in collared flycatcher, yielding a total of 122.41 kb of genomic DNA sequence (12096 bp coding sequence and 110 314 bp noncoding). Intron size of collared flycatcher and chicken was highly correlated, as was GC content. A polymorphism screening using these markers in a panel of 10 unrelated collared flycatchers identified 871 single nucleotide polymorphisms (pi = 0.0029) and 33 indels (mainly very short). Avian genome characteristics such as uniform genome size and low rate of syntenic rearrangements suggest that this marker set will find broad utility as a genome-wide reference resource for molecular ecological and population genomic analysis of birds. We envision that it will be particularly useful for obtaining large-scale orthologous targets in different species--important in, for instance, phylogenetics--and for large-scale identification of evenly distributed single nucleotide polymorphisms needed in linkage mapping or in studies of gene flow and hybridization.
  •  
23.
  • Backström, Niclas, et al. (författare)
  • Inferring the demographic history of European Ficedula flycatcher populations
  • 2013
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 13, s. 2-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Inference of population and species histories and population stratification using genetic data is important for discriminating between different speciation scenarios and for correct interpretation of genome scans for signs of adaptive evolution and trait association. Here we use data from 24 intronic loci re-sequenced in population samples of two closely related species, the pied flycatcher and the collared flycatcher. Results: We applied Isolation-Migration models, assignment analyses and estimated the genetic differentiation and diversity between species and between populations within species. The data indicate a divergence time between the species of <1 million years, significantly shorter than previous estimates using mtDNA, point to a scenario with unidirectional gene-flow from the pied flycatcher into the collared flycatcher and imply that barriers to hybridisation are still permeable in a recently established hybrid zone. Furthermore, we detect significant population stratification, predominantly between the Spanish population and other pied flycatcher populations. Conclusions: Our results provide further evidence for a divergence process where different genomic regions may be at different stages of speciation. We also conclude that forthcoming analyses of genotype-phenotype relations in these ecological model species should be designed to take population stratification into account.
  •  
24.
  • Backström, Niclas, et al. (författare)
  • Levels of linkage disequilibrium in a wild bird population
  • 2006
  • Ingår i: Biology Letters. - : The Royal Society. - 1744-9561 .- 1744-957X. ; 2:3, s. 435-438
  • Tidskriftsartikel (refereegranskat)abstract
    • Population-based mapping approaches are attractive for tracing the genetic background to phenotypic traits in wild species, given that it is often difficult to gather extensive and well-defined pedigrees needed for quantitative trait locus analysis. However, the feasibility of association or hitch-hiking mapping is dependent on the degree of linkage disequilibrium. (LD) in the population, on which there is yet limited information for wild species. Here we use single nucleotide polymorphism (SNP) markers from 23 genes in a recently established linkage map of the Z chromosome of the collared flycatcher, to study the extent of LD in a natural bird population. In most but not all cases we find SNPs within the same intron (less than 500 bp) to be in perfect LD. However, LD then decays to background level at a distance 1 cM or 400-500 kb. Although LD seems more extensive than in other species, if the observed pattern is representative for other regions of the genome and turns out to be a general feature of natural bird populations, dense marker maps might be needed for genome scans aimed at identifying association between marker and trait loci.
  •  
25.
  • Backström, Niclas, et al. (författare)
  • No evidence for Z-chromosome rearrangements between the pied flycatcher and the collared flycatcher as judged by gene-based comparative genetic maps
  • 2010
  • Ingår i: Molecular Ecology. - 0962-1083 .- 1365-294X. ; 19:16, s. 3394-3405
  • Tidskriftsartikel (refereegranskat)abstract
    • Revealing the genetic basis of reproductive isolation is fundamental for understanding the speciation process. Chromosome speciation models propose a role for chromosomal rearrangements in promoting the build up of reproductive isolation between diverging populations and empirical data from several animal and plant taxa support these models. The pied flycatcher and the collared flycatcher are two closely related species that probably evolved reproductive isolation during geographical separation in Pleistocene glaciation refugia. Despite the short divergence time and current hybridization, these two species demonstrate a high degree of intrinsic post-zygotic isolation and previous studies have shown that traits involved in mate choice and hybrid viability map to the Z-chromosome. Could rearrangements of the Z-chromosome between the species explain their reproductive isolation? We developed high coverage Z-chromosome linkage maps for both species, using gene-based markers and large-scale SNP genotyping. Best order maps contained 57-62 gene markers with an estimated average density of one every 1-1.5 Mb. We estimated the recombination rates in flycatcher Z-chromosomes to 1.1-1.3 cM/Mb. A comparison of the maps of the two species revealed extensive co-linearity with no strong evidence for chromosomal rearrangements. This study does therefore not provide support the idea that sex chromosome rearrangements have caused the relatively strong post-zygotic reproductive isolation between these two Ficedula species.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 260
Typ av publikation
tidskriftsartikel (194)
annan publikation (21)
doktorsavhandling (20)
forskningsöversikt (15)
bok (4)
samlingsverk (redaktörskap) (2)
visa fler...
rapport (2)
bokkapitel (2)
visa färre...
Typ av innehåll
refereegranskat (205)
övrigt vetenskapligt/konstnärligt (50)
populärvet., debatt m.m. (5)
Författare/redaktör
Ellegren, Hans (250)
Backström, Niclas (27)
Smeds, Linnea (27)
Qvarnström, Anna (24)
Webster, Matthew T. (18)
Mugal, Carina F (17)
visa fler...
Brandström, Mikael (15)
Burri, Reto (15)
Smith, Nick G.C. (15)
Axelsson, Erik (12)
Dutoit, Ludovic (12)
Nabholz, Benoit (12)
Berlin, Sofia (11)
Bolivar, Paulina (11)
Kawakami, Takeshi (11)
Uebbing, Severin (11)
Mank, Judith E. (10)
Vilà, Carles (10)
Nater, Alexander (10)
Andersson, Leif (9)
Wang, Mi (9)
Nadachowska-Brzyska, ... (9)
Wolf, Jochen B. W. (8)
Schielzeth, Holger (8)
Jarvis, Erich D. (8)
Suh, Alexander (8)
Forstmeier, Wolfgang (8)
Mugal, Carina (8)
Kempenaers, Bart (7)
Edfors-Lilja, Inger (7)
Ellegren, Hans, Prof ... (7)
Nam, Kiwoong (7)
Flagstad, Oystein (7)
Anderung, Cecilia (6)
Hedmark, Eva (6)
Burt, David W. (6)
Hultin-Rosenberg, Li ... (6)
Sætre, Glenn-Peter (6)
Husby, Arild (6)
McFarlane, S. Eryn (6)
Gustafsson, Lars (5)
Hellborg, Linda (5)
Götherström, Anders (5)
Elburg, Rengert (5)
Smith, Colin (5)
Sundqvist, Anna-Kari ... (5)
Sundström, Hannah (5)
Griffin, Darren K. (5)
Warren, Wesley C. (5)
Ålund, Murielle (5)
visa färre...
Lärosäte
Uppsala universitet (252)
Sveriges Lantbruksuniversitet (11)
Linnéuniversitetet (7)
Högskolan Dalarna (3)
Stockholms universitet (2)
Lunds universitet (2)
visa fler...
Göteborgs universitet (1)
Linköpings universitet (1)
Karolinska Institutet (1)
Naturhistoriska riksmuseet (1)
visa färre...
Språk
Engelska (230)
Odefinierat språk (21)
Svenska (9)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (187)
Lantbruksvetenskap (6)
Humaniora (5)
Medicin och hälsovetenskap (4)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy