SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Emken Timon) "

Sökning: WFRF:(Emken Timon)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aalbers, J., et al. (författare)
  • A next-generation liquid xenon observatory for dark matter and neutrino physics
  • 2023
  • Ingår i: Journal of Physics G: Nuclear and Particle Physics. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 50:1
  • Forskningsöversikt (refereegranskat)abstract
    • The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.
  •  
2.
  • Andersson, Erik, et al. (författare)
  • Projected sensitivity to sub-GeV dark matter of next-generation semiconductor detectors
  • 2020
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; 2020:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We compute the projected sensitivity to dark matter (DM) particles in the sub-GeV mass range of future direct detection experiments using germanium and silicon semiconductor targets. We perform this calculation within the dark photon model for DM-electron interactions using the likelihood ratio as a test statistic, Monte Carlo simulations, and background models that we extract from recent experimental data. We present our results in terms of DM-electron scattering cross section values required to reject the background only hypothesis in favour of the background plus DM signal hypothesis with a statistical significance, Z, corresponding to 3 or 5 standard deviations. We also test the stability of our conclusions under changes in the astrophysical parameters governing the local space and velocity distribution of DM in the Milky Way. In the best-case scenario, when a high-voltage germanium detector with an exposure of 50 kg-year and a CCD silicon detector with an exposure of 1 kg-year and a dark current rate of 1×10-7 counts/pixel/day have simultaneously reported a DM signal, we find that the smallest cross section value compatible with Z=3 (Z=5) is about 4×10-42 cm2 (6×10-42 cm2) for contact interactions, and 2.5×10-41 cm2 (4×10-41 cm2) for long-range interactions. Our sensitivity study extends and refine previous works in terms of background models, statistical methods, and treatment of the underlying astrophysical uncertainties.
  •  
3.
  • Ávalos, N., et al. (författare)
  • Skipper CCDs for the search of a daily modulation of Dark Matter signal in the DMSQUARE experiment
  • 2022
  • Ingår i: 17th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2021), 26 August-3 September 2021, Valencia. - Bristol : Institute of Physics Publishing (IOPP).
  • Konferensbidrag (refereegranskat)abstract
    • The Dark Matter Daily Modulation experiment (DMSQUARE) seeks for dark matter interactions with a Skipper CCD. It is currently running at surface level in Bariloche, Argentina, and will be moved to a shallow underground site at Sierra Grande, Argentina in November 2021. The low threshold achieved by Skipper CCDs allows to search for electron recoil events with an ionization energy down to 1.2 eV. In order to extract a potential dark matter signal from noise at the single electron level, we propose to search for a diurnal modulation of events, resulting from the potential interaction of the dark matter wind with the particles in the Earth. Depending on the model, mass and cross-section, this modulation can be maximum at 40deg of latitude in the Southern Hemisphere, where DMSQUARE is operated. In this article we present the experiment, report preliminary results with a prototype Skipper CCD taking data at surface level and comment on future prospects.
  •  
4.
  • Catena, Riccardo, 1978, et al. (författare)
  • Atomic responses to general dark matter-electron interactions
  • 2020
  • Ingår i: Physical Review Research. - 2643-1564. ; 2:3
  • Tidskriftsartikel (refereegranskat)abstract
    • In the leading paradigm of modern cosmology, about 80% of our Universe's matter content is in the form of hypothetical, as yet undetected particles. These do not emit or absorb radiation at any observable wavelengths, and therefore constitute the so-called dark matter (DM) component of the Universe. Detecting the particles forming the Milky Way DM component is one of the main challenges for astroparticle physics and basic science in general. One promising way to achieve this goal is to search for rare DM-electron interactions in low-background deep underground detectors. Key to the interpretation of this search is the response of detectors' materials to elementary DM-electron interactions defined in terms of electron wave functions' overlap integrals. In this work, we compute the response of atomic argon and xenon targets used in operating DM search experiments to general, so far unexplored DM-electron interactions. We find that the rate at which atoms can be ionized via DM-electron scattering can in general be expressed in terms of four independent atomic responses, three of which we identify here for the first time. We find our new atomic responses to be numerically important in a variety of cases, which we identify and investigate thoroughly using effective theory methods. We then use our atomic responses to set 90% confidence level (C.L.) exclusion limits on the strength of a wide range of DM-electron interactions from the null result of DM search experiments using argon and xenon targets.
  •  
5.
  • Catena, Riccardo, 1978, et al. (författare)
  • Crystal responses to general dark matter-electron interactions
  • 2021
  • Ingår i: Physical Review Research. - 2643-1564. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We develop a formalism to describe the scattering of dark matter (DM) particles by electrons bound in crystals for a general form of the underlying DM-electron interaction. Such a description is relevant for direct-detection experiments of DM particles lighter than a nucleon, which might be observed in operating DM experiments via electron excitations in semiconductor crystal detectors. Our formalism is based on an effective theory approach to general nonrelativistic DM-electron interactions, including the anapole, and magnetic and electric dipole couplings, combined with crystal response functions defined in terms of electron wave function overlap integrals. Our main finding is that, for the usual simplification of the velocity integral, the rate of DM-induced electronic transitions in a semiconductor material depends on at most five independent crystal response functions four of which are distinct from the usual scalar response. We identify these crystal responses and evaluate them using density functional theory for crystalline silicon and germanium, which are used in operating DMdirect-detection experiments. Our calculations allow us to set 90% confidence level limits on the strength of DM-electron interactions from data reported by the SENSEI and EDELWEISS experiments. The crystal response functions discovered in this paper encode properties of crystalline solids that do not interact with conventional experimental probes, suggesting the use of the DM wind as a probe to reveal new kinds of hidden order in materials.
  •  
6.
  • Catena, Riccardo, 1978, et al. (författare)
  • Dark matter-electron interactions in materials beyond the dark photon model
  • 2023
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; 2023:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The search for sub-GeV dark matter (DM) particles via electronic transitions in underground detectors attracted much theoretical and experimental interest in the past few years. A still open question in this field is whether experimental results can in general be interpreted in a framework where the response of detector materials to an external DM probe is described by a single ionisation or crystal form factor, as expected for the so-called dark photon model. Here, ionisation and crystal form factors are examples of material response functions: interaction-specific integrals of the initial and final state electron wave functions. In this work, we address this question through a systematic classification of the material response functions induced by a wide range of models for spin-0, spin-1/2 and spin-1 DM. We find several examples for which an accurate description of the electronic transition rate at DM direct detection experiments requires material response functions that go beyond those expected for the dark photon model. This concretely illustrates the limitations of a framework that is entirely based on the standard ionisation and crystal form factors, and points towards the need for the general response-function-based formalism we pushed forward recently [1,2]. For the models that require non-standard atomic and crystal response functions, we use the response functions of [1,2] to calculate the DM-induced electronic transition rate in atomic and crystal detectors, and to present 90% confidence level exclusion limits on the strength of the DM-electron interaction from the null results reported by XENON10, XENON1T, EDELWEISS and SENSEI.
  •  
7.
  • Catena, Riccardo, 1978, et al. (författare)
  • Direct searches for general dark matter-electron interactions with graphene detectors: Part I. Electronic structure calculations
  • 2023
  • Ingår i: Physical Review Research. - 2643-1564. ; 5:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We develop a formalism to describe electron ejections from graphenelike targets by dark matter (DM) scattering for general forms of scalar and spin-1/2 DM-electron interactions, and we compare their applicability and accuracy within the density functional theory (DFT) and tight-binding (TB) approaches. This formalism allows for accurate prediction of the daily modulation signal expected from DM in upcoming direct detection experiments employing graphene sheets as the target material. A key result is that the physics of the graphene sheet and that of the DM and the ejected electron factorize, allowing for the rate of ejections from all forms of DM to be obtained with a single graphene response function. We perform a comparison between the TB and DFT approaches to modeling the initial state electronic wave function within this framework, with DFT emerging as the more self-consistent and reliable choice due to the challenges in the embedding of an appropriate atomic contribution into the TB approach.
  •  
8.
  • Catena, Riccardo, 1978, et al. (författare)
  • Direct searches for general dark matter-electron interactions with graphene detectors: Part II. Sensitivity studies
  • 2023
  • Ingår i: Physical Review Research. - 2643-1564. ; 5:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We use a formalism that describes electron ejections from graphenelike targets by dark matter (DM) scattering for general forms of scalar and spin-1/2 DM-electron interactions in combination with state-of-the-art density functional calculations to produce predictions and reach estimates for various possible carbon-based detector designs. Our results indicate the importance of a proper description of the target electronic structure. In addition, we find a strong dependence of the predicted observed signal for different DM candidate masses and interaction types on the detailed geometry and design of the detector. Combined with directional background vetoing, these dependencies will enable the identification of DM particle properties once a signal has been established.
  •  
9.
  • Catena, Riccardo, 1978, et al. (författare)
  • Rejecting the Majorana nature of dark matter with electron scattering experiments
  • 2020
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; 2020:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Assuming that Dark Matter (DM) is made of fermions in the sub-GeV mass range with interactions dominated by electromagnetic moments of higher order, such as the electric and magnetic dipoles or the anapole moment, we show that direct detection experiments searching for atomic ionisation events in xenon targets can shed light on whether DM is a Dirac or Majorana particle. Specifically, we find that between about 45 (120) and 610 (1700) signal events are required to reject Majorana DM in favour of Dirac DM with a statistical significance corresponding to 3 (5) standard deviations. The exact number of DM signal events corresponding to a given significance depends on the relative size of the anapole, magnetic dipole and electric dipole contributions to the expected rate of DM-induced atomic ionisations under the Dirac hypothesis. Our conclusions are based on Monte Carlo simulations and the likelihood ratio test. While the use of asymptotic formulae for the latter is standard in many applications, here it requires a non-trivial extension to the case where one of the hypotheses lies on the boundary of the parameter space. Our results constitute a solid proof of concept about the possibility of using direct detection experiments to reject the Majorana DM hypothesis when the DM interactions are dominated by higher-order electromagnetic moments.
  •  
10.
  • Emken, Timon, 1988, et al. (författare)
  • Direct detection of strongly interacting sub-GeV dark matter via electron recoils
  • 2019
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; 2019:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We consider direct-detection searches for sub-GeV dark matter via electron scatterings in the presence of large interactions between dark and ordinary matter. Scatterings both on electrons and nuclei in the Earth's crust, atmosphere, and shielding material attenuate the expected local dark matter flux at a terrestrial detector, so that such experiments lose sensitivity to dark matter above some critical cross section. We study various models, including dark matter interacting with a heavy and ultralight dark photon, through an electric dipole moment, and exclusively with electrons. For a dark-photon mediator and an electric dipole interaction, the dark matter-electron scattering cross-section is directly linked to the dark matter-nucleus cross section, and nuclear interactions typically dominate the attenuation process. We determine the exclusion bands for the different dark-matter models from several experiments - SENSEI, CDMS-HVeV, XENON10, XENON100, and DarkSide-50 - using a combination of Monte Carlo simulations and analytic estimates. We also derive projected sensitivities for a detector located at different depths and for a range of exposures, and calculate the projected sensitivity for SENSEI at SNOLAB and DAMIC-M at Modane. Finally, we discuss the reach to high cross sections and the modulation signature of a small balloon- and satellite-borne detector sensitive to electron recoils, such as a Skipper-CCD. Such a detector could potentially probe unconstrained parameter space at high cross sections for a sub-dominant component of dark matter interacting with a massive, but ultralight, dark photon. © 2019 IOP Publishing Ltd and Sissa Medialab.
  •  
11.
  • Emken, Timon, et al. (författare)
  • Electron recoils from terrestrial upscattering of inelastic dark matter
  • 2022
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 105:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The growing interest in the interactions between dark matter particles and electrons has received a further boost by the observation of an excess in electron recoil events in the XENON1T experiment. Of particular interest are dark matter models in which the scattering process is inelastic, such that the ground state can upscatter into an excited state. The subsequent exothermic downscattering of such excited states on electrons can lead to observable signals in direct detection experiments and gives a good fit to the XENON1T excess. In this work, we study terrestrial upscattering, i.e., inelastic scattering of dark matter particles on nuclei in the Earth, as a plausible origin of such excited states. Using both analytical and Monte Carlo methods, we obtain detailed predictions of their density and velocity distribution. These results enable us to explore the time dependence of the flux of excited states resulting from the rotation of the Earth. For the case of XENON1T, we find the resulting daily modulation of the electron recoil signal to be at the level of 10% with a strong dependence on the dark matter mass.
  •  
12.
  • Emken, Timon (författare)
  • obscura : A modular C++ tool and library for the direct detection of (sub-GeV) dark matter via nuclear and electron recoils
  • 2021
  • Ingår i: Journal of Open Source Software. - : The Open Journal. - 2475-9066. ; 6:68
  • Tidskriftsartikel (refereegranskat)abstract
    • For the interpretation of past and future direct searches for dark matter (DM) particles, it is important to be able to provide accurate predictions for event rates and spectra under a variety of possible and viable assumptions in a computationally efficient way. While there exists a few tools to compute DM induced nuclear recoil spectra, 'obscura' is not limited to nuclear targets. Instead its main focus lies on sub-GeV DM searches probing electron recoils which typically requires methods from atomic and condensed matter physics. In the context of sub-GeV DM searches, new ideas such as target materials or detection techniques are being proposed regularly, and the theoretical modelling of these are getting improved continuously. At the same time, currently running experiments continue to publish their results and analyses, setting increasingly strict bounds on the DM parameter space. In such a dynamic field, 'obscura' can be an invaluable tool due to its high level of adaptability and facilitate and accelerate the development of new, reliable research software for the preparation of a DM discovery in the hopefully near future.
  •  
13.
  • Emken, Timon, 1988 (författare)
  • Solar reflection of light dark matter with heavy mediators
  • 2022
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 105:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The direct detection of sub-GeV dark matter particles is hampered by their low energy deposits. If the maximum deposit allowed by kinematics falls below the energy threshold of a direct detection experiment, it is unable to detect these light particles. Mechanisms that boost particles from the Galactic halo can therefore extend the sensitivity of terrestrial direct dark matter searches to lower masses. Sub-GeV and sub-MeV dark matter particles can be efficiently accelerated by colliding with thermal nuclei and electrons of the solar plasma, respectively. This process is called "solar reflection."In this paper, we present a comprehensive study of solar reflection via electron and/or nuclear scatterings using Monte Carlo simulations of dark matter trajectories through the Sun. We study the properties of the boosted dark matter particles, obtain exclusion limits based on various experiments probing both electron and nuclear recoils, and derive projections for future detectors. In addition, we find and quantify a novel, distinct annual modulation signature of a potential solar reflection signal which critically depends on the anisotropies of the boosted dark matter flux ejected from the Sun. Along with this paper, we also publish the corresponding research software.
  •  
14.
  • Kavanagh, Bradley J., et al. (författare)
  • Measuring the local dark matter density in the laboratory
  • 2021
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 104:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite strong evidence for the existence of large amounts of dark matter (DM) in our Universe, there is no direct indication of its presence in our own solar system. All estimates of the local DM density rely on extrapolating results on much larger scales. We demonstrate for the first time the possibility of simultaneously measuring the local DM density and interaction cross section with a direct detection experiment. It relies on the assumption that incoming DM particles frequently scatter on terrestrial nuclei prior to detection, inducing an additional time-dependence of the signal. We show that for sub-GeV DM, with a large spin-independent DM-proton cross section, future direct detection experiments should be able to reconstruct the local DM density with smaller than 50% uncertainty.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy