SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ergun R.) "

Sökning: WFRF:(Ergun R.)

  • Resultat 1-25 av 209
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
4.
  • 2021
  • swepub:Mat__t
  •  
5.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
6.
  •  
7.
  • Jakosky, B. M., et al. (författare)
  • MAVEN observations of the response of Mars to an interplanetary coronal mass ejection
  • 2015
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 350:6261
  • Tidskriftsartikel (refereegranskat)abstract
    • Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere.
  •  
8.
  • Jakosky, B. M., et al. (författare)
  • The Mars Atmosphere and Volatile Evolution (MAVEN) Mission
  • 2015
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 195:1-4, s. 3-48
  • Forskningsöversikt (refereegranskat)abstract
    • The MAVEN spacecraft launched in November 2013, arrived at Mars in September 2014, and completed commissioning and began its one-Earth-year primary science mission in November 2014. The orbiter's science objectives are to explore the interactions of the Sun and the solar wind with the Mars magnetosphere and upper atmosphere, to determine the structure of the upper atmosphere and ionosphere and the processes controlling it, to determine the escape rates from the upper atmosphere to space at the present epoch, and to measure properties that allow us to extrapolate these escape rates into the past to determine the total loss of atmospheric gas to space through time. These results will allow us to determine the importance of loss to space in changing the Mars climate and atmosphere through time, thereby providing important boundary conditions on the history of the habitability of Mars. The MAVEN spacecraft contains eight science instruments (with nine sensors) that measure the energy and particle input from the Sun into the Mars upper atmosphere, the response of the upper atmosphere to that input, and the resulting escape of gas to space. In addition, it contains an Electra relay that will allow it to relay commands and data between spacecraft on the surface and Earth.
  •  
9.
  • Le Contel, O., et al. (författare)
  • Lower Hybrid Drift Waves and Electromagnetic Electron Space-Phase Holes Associated With Dipolarization Fronts and Field-Aligned Currents Observed by the Magnetospheric Multiscale Mission During a Substorm
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:12, s. 12236-12257
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on 10 August 2016. The first event corresponds to a fast dawnward flow with an antiparallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The second event corresponds to a flow reversal: from southwward/dawnward to northward/duskward associated with a parallel current consistent with a brief expansion of the plasma sheet before the front crossing and with a smaller lower hybrid drift wave activity. Electromagnetic electron phase-space holes are detected near these low-frequency drift waves during both events. The drift waves could accelerate electrons parallel to the magnetic field and produce the parallel electron drift needed to generate the electron holes. Yet we cannot rule out the possibility that the drift waves are produced by the antiparallel current associated with the fast flows, leaving the source for the electron holes unexplained.
  •  
10.
  • Breuillard, H., et al. (författare)
  • The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:1, s. 93-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency similar to 100Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2f(ce) by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.
  •  
11.
  • Bale, S. D., et al. (författare)
  • The FIELDS Instrument Suite for Solar Probe Plus
  • 2016
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 204:1-4, s. 49-82
  • Forskningsöversikt (refereegranskat)abstract
    • NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
  •  
12.
  • Eastwood, J. P., et al. (författare)
  • Ion-scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:10, s. 4716-4724
  • Tidskriftsartikel (refereegranskat)abstract
    • New Magnetospheric Multiscale (MMS) observations of small-scale (similar to 7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 10 km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (similar to 22 kWb). The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. Intercomparison of the plasma moments with electric and magnetic field measurements reveals structured non-frozen-in ion behavior. The data are further compared with a particle-in-cell simulation. It is concluded that these small-scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection.
  •  
13.
  • Khotyaintsev, Yuri V., et al. (författare)
  • Electron jet of asymmetric reconnection
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5571-5580
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E-vertical bar amplitudes reaching up to 300mVm(-1) and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.
  •  
14.
  • Nakamura, R., et al. (författare)
  • Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:10, s. 4841-4849
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
  •  
15.
  • Torbert, R. B., et al. (författare)
  • Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space
  • 2018
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 362:6421, s. 1391-1395
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth's magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth's magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvenic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.1 to 0.2, consistent with fast reconnection. The well-structured multiple layers of electron populations indicate that the dominant electron dynamics are mostly laminar, despite the presence of turbulence near the reconnection site.
  •  
16.
  • Zhou, M., et al. (författare)
  • Observations of an Electron Diffusion Region in Symmetric Reconnection with Weak Guide Field
  • 2019
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 870:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Magnetospheric Multiscale spacecraft encountered an electron diffusion region (EDR) in a symmetric reconnection in the Earth's magnetotail. The EDR contained a guide field of about 2 nT, which was 13% of the magnetic field in the inflow region, and its thickness was about 2 local electron inertial lengths. Intense energy dissipation, a super-Alfvenic electron jet, electron nongyrotropy, and crescent-shaped electron velocity distributions were observed in association with this EDR. These features are similar to those of the EDRs in asymmetric reconnection at the dayside magnetopause. Electrons gained about 50% of their energy from the immediate upstream to the EDR. Crescent electron distributions were seen at the boundary of the EDR, while highly curved magnetic field lines inside the EDR may have gyrotropized the electrons. The EDR was characterized by a parallel current that was carried by antiparallel drifting electrons that were probably accelerated by a parallel electric field along the guide field. These results reveal the essential electron physics of the EDR and provide a significant example of an EDR in symmetric reconnection with a weak guide field.
  •  
17.
  • Alqeeq, S. W., et al. (författare)
  • Investigation of the homogeneity of energy conversion processes at dipolarization fronts from MMS measurements
  • 2022
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 29:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on six dipolarization fronts (DFs) embedded in fast earthward flows detected by the Magnetospheric Multiscale mission during a substorm event on 23 July 2017. We analyzed Ohm's law for each event and found that ions are mostly decoupled from the magnetic field by Hall fields. However, the electron pressure gradient term is also contributing to the ion decoupling and likely responsible for an electron decoupling at DF. We also analyzed the energy conversion process and found that the energy in the spacecraft frame is transferred from the electromagnetic field to the plasma (J & BULL; E > 0) ahead or at the DF, whereas it is the opposite (J & BULL; E < 0) behind the front. This reversal is mainly due to a local reversal of the cross-tail current indicating a substructure of the DF. In the fluid frame, we found that the energy is mostly transferred from the plasma to the electromagnetic field (J & BULL; E & PRIME; < 0) and should contribute to the deceleration of the fast flow. However, we show that the energy conversion process is not homogeneous at the electron scales due to electric field fluctuations likely related to lower-hybrid drift waves. Our results suggest that the role of DF in the global energy cycle of the magnetosphere still deserves more investigation. In particular, statistical studies on DF are required to be carried out with caution due to these electron scale substructures.
  •  
18.
  • Alqeeq, S. W., et al. (författare)
  • Two Classes of Equatorial Magnetotail Dipolarization Fronts Observed by Magnetospheric Multiscale Mission : A Statistical Overview
  • 2023
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 128:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We carried out a statistical study of equatorial dipolarization fronts (DFs) detected by the Magnetospheric Multiscale mission during the full 2017 Earth's magnetotail season. We found that two DF classes are distinguished: class I (74.4%) corresponds to the standard DF properties and energy dissipation and a new class II (25.6%). This new class includes the six DF discussed in Alqeeq et al. (2022, ) and corresponds to a bump of the magnetic field associated with a minimum in the ion and electron pressures and a reversal of the energy conversion process. The possible origin of this second class is discussed. Both DF classes show that the energy conversion process in the spacecraft frame is driven by the diamagnetic current dominated by the ion pressure gradient. In the fluid frame, it is driven by the electron pressure gradient. In addition, we have shown that the energy conversion processes are not homogeneous at the electron scale mostly due to the variations of the electric fields for both DF classes.
  •  
19.
  • Breuillard, H., et al. (författare)
  • Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:14, s. 7279-7286
  • Tidskriftsartikel (refereegranskat)abstract
    • Dipolarization fronts (DFs), embedded in bursty bulk flows, play a crucial role in Earth's plasma sheet dynamics because the energy input from the solar wind is partly dissipated in their vicinity. This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic electrons up to the high-latitude plasma sheet. However, the dynamics of DF propagation and associated low-frequency waves in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances. In May 2015 the Magnetospheric Multiscale (MMS) mission was in a string-of-pearls configuration with an average intersatellite distance of 160km, which allows us to study in detail the microphysics of DFs. Thus, in this letter we employ MMS data to investigate the properties of dipolarization fronts propagating earthward and associated whistler mode wave emissions. We show that the spatial dynamics of DFs are below the ion gyroradius scale in this region (approximate to 500km), which can modify the dynamics of ions in the vicinity of the DF (e.g., making their motion nonadiabatic). We also show that whistler wave dynamics have a temporal scale of the order of the ion gyroperiod (a few seconds), indicating that the perpendicular temperature anisotropy can vary on such time scales.
  •  
20.
  • Breuillard, H., et al. (författare)
  • New Insights into the Nature of Turbulence in the Earth's Magnetosheath Using Magnetospheric MultiScale Mission Data
  • 2018
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 859:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth's magnetosheath, which is characterized by highly turbulent fluctuations, is usually divided into two regions of different properties as a function of the angle between the interplanetary magnetic field and the shock normal. In this study, we make use of high-time resolution instruments on board the Magnetospheric MultiScale spacecraft to determine and compare the properties of subsolar magnetosheath turbulence in both regions, i. e., downstream of the quasi-parallel and quasi-perpendicular bow shocks. In particular, we take advantage of the unprecedented temporal resolution of the Fast Plasma Investigation instrument to show the density fluctuations down to sub-ion scales for the first time. We show that the nature of turbulence is highly compressible down to electron scales, particularly in the quasi-parallel magnetosheath. In this region, the magnetic turbulence also shows an inertial (Kolmogorov-like) range, indicating that the fluctuations are not formed locally, in contrast with the quasi-perpendicular magnetosheath. We also show that the electromagnetic turbulence is dominated by electric fluctuations at sub-ion scales (f > 1Hz) and that magnetic and electric spectra steepen at the largest-electron scale. The latter indicates a change in the nature of turbulence at electron scales. Finally, we show that the electric fluctuations around the electron gyrofrequency are mostly parallel in the quasi-perpendicular magnetosheath, where intense whistlers are observed. This result suggests that energy dissipation, plasma heating, and acceleration might be driven by intense electrostatic parallel structures/waves, which can be linked to whistler waves.
  •  
21.
  • Burch, J. L., et al. (författare)
  • Electron-scale measurements of magnetic reconnection in space
  • 2016
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 352:6290, s. 1189-
  • Forskningsöversikt (refereegranskat)abstract
    • Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.
  •  
22.
  • Burch, J. L., et al. (författare)
  • Localized Oscillatory Energy Conversion in Magnetopause Reconnection
  • 2018
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 45:3, s. 1237-1245
  • Tidskriftsartikel (refereegranskat)abstract
    • Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized (similar to 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J . E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).
  •  
23.
  • Chasapis, A., et al. (författare)
  • Electron Heating at Kinetic Scales in Magnetosheath Turbulence
  • 2017
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 836:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a statistical study of coherent structures at kinetic scales, using data from the Magnetospheric Multiscale mission in the Earth's magnetosheath. We implemented the multi-spacecraft partial variance of increments (PVI) technique to detect these structures, which are associated with intermittency at kinetic scales. We examine the properties of the electron heating occurring within such structures. We find that, statistically, structures with a high PVI index are regions of significant electron heating. We also focus on one such structure, a current sheet, which shows some signatures consistent with magnetic reconnection. Strong parallel electron heating coincides with whistler emissions at the edges of the current sheet.
  •  
24.
  • Ergun, R. E., et al. (författare)
  • Drift waves, intense parallel electric fields, and turbulence associated with asymmetric magnetic reconnection at the magnetopause
  • 2017
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 44:7, s. 2978-2986
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of magnetic reconnection at Earth's magnetopause often display asymmetric structures that are accompanied by strong magnetic field (B) fluctuations and large-amplitude parallel electric fields (E-||). The B turbulence is most intense at frequencies above the ion cyclotron frequency and below the lower hybrid frequency. The B fluctuations are consistent with a thin, oscillating current sheet that is corrugated along the electron flow direction (along the X line), which is a type of electromagnetic drift wave. Near the X line, electron flow is primarily due to a Hall electric field, which diverts ion flow in asymmetric reconnection and accompanies the instability. Importantly, the drift waves appear to drive strong parallel currents which, in turn, generate large-amplitude (similar to 100mV/m) E-|| in the form of nonlinear waves and structures. These observations suggest that turbulence may be common in asymmetric reconnection, penetrate into the electron diffusion region, and possibly influence the magnetic reconnection process.
  •  
25.
  • Ergun, R. E., et al. (författare)
  • Magnetic Reconnection, Turbulence, and Particle Acceleration : Observations in the Earth's Magnetotail
  • 2018
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing Ltd. - 0094-8276 .- 1944-8007. ; 45:8, s. 3338-3347
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations of turbulent dissipation and particle acceleration from large-amplitude electric fields (E) associated with strong magnetic field (B) fluctuations in the Earth's plasma sheet. The turbulence occurs in a region of depleted density with anti-earthward flows followed by earthward flows suggesting ongoing magnetic reconnection. In the turbulent region, ions and electrons have a significant increase in energy, occasionally >100 keV, and strong variation. There are numerous occurrences of |E| >100 mV/m including occurrences of large potentials (>1 kV) parallel to B and occurrences with extraordinarily large J · E (J is current density). In this event, we find that the perpendicular contribution of J · E with frequencies near or below the ion cyclotron frequency (fci) provide the majority net positive J · E. Large-amplitude parallel E events with frequencies above fci to several times the lower hybrid frequency provide significant dissipation and can result in energetic electron acceleration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 209

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy