SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Erhardt Tobias) "

Sökning: WFRF:(Erhardt Tobias)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adolphi, Florian, et al. (författare)
  • Connecting the Greenland ice-core and U/Th timescales via cosmogenic radionuclides : Testing the synchroneity of Dansgaard-Oeschger events
  • 2018
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 14:11, s. 1755-1781
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last glacial period Northern Hemisphere climate was characterized by extreme and abrupt climate changes, so-called Dansgaard-Oeschger (DO) events. Most clearly observed as temperature changes in Greenland ice-core records, their climatic imprint was geographically widespread. However, the temporal relation between DO events in Greenland and other regions is uncertain due to the chronological uncertainties of each archive, limiting our ability to test hypotheses of synchronous change. In contrast, the assumption of direct synchrony of climate changes forms the basis of many timescales. Here, we use cosmogenic radionuclides (10Be, 36Cl, 14C) to link Greenland ice-core records to U=Th-dated speleothems, quantify offsets between the two timescales, and improve their absolute dating back to 45 000 years ago. This approach allows us to test the assumption that DO events occurred synchronously between Greenland ice-core and tropical speleothem records with unprecedented precision. We find that the onset of DO events occurs within synchronization uncertainties in all investigated records. Importantly, we demonstrate that local discrepancies remain in the temporal development of rapid climate change for specific events and speleothems. These may either be related to the location of proxy records relative to the shifting atmospheric fronts or to underestimated U=Th dating uncertainties. Our study thus highlights the potential for misleading interpretations of the Earth system when applying the common practice of climate wiggle matching.
  •  
2.
  • Alnaes, Dag, et al. (författare)
  • Brain Heterogeneity in Schizophrenia and Its Association With Polygenic Risk
  • 2019
  • Ingår i: JAMA psychiatry. - : AMER MEDICAL ASSOC. - 2168-6238 .- 2168-622X. ; 76:7, s. 739-748
  • Tidskriftsartikel (refereegranskat)abstract
    • ImportanceBetween-individual variability in brain structure is determined by gene-environment interactions, possibly reflecting differential sensitivity to environmental and genetic perturbations. Magnetic resonance imaging (MRI) studies have revealed thinner cortices and smaller subcortical volumes in patients with schizophrenia. However, group-level comparisons may mask considerable within-group heterogeneity, which has largely remained unnoticed in the literature. ObjectivesTo compare brain structural variability between individuals with schizophrenia and healthy controls and to test whether respective variability reflects the polygenic risk score (PRS) for schizophrenia in an independent sample of healthy controls. Design, Setting, and ParticipantsThis case-control and polygenic risk analysis compared MRI-derived cortical thickness and subcortical volumes between healthy controls and patients with schizophrenia across 16 cohorts and tested for associations between PRS and MRI features in a control cohort from the UK Biobank. Data were collected from October 27, 2004, through April 12, 2018, and analyzed from December 3, 2017, through August 1, 2018. Main Outcomes and MeasuresMean and dispersion parameters were estimated using double generalized linear models. Vertex-wise analysis was used to assess cortical thickness, and regions-of-interest analyses were used to assess total cortical volume, total surface area, and white matter, subcortical, and hippocampal subfield volumes. Follow-up analyses included within-sample analysis, test of robustness of the PRS threshold, population covariates, outlier removal, and control for image quality. ResultsA comparison of 1151 patients with schizophrenia (mean [SD] age,33.8[10.6] years; 68.6% male [n=790] and 31.4% female [n=361]) with 2010 healthy controls (mean [SD] age,32.6[10.4] years; 56.0% male [n=1126] and 44.0% female [n=884]) revealed higher heterogeneity in schizophrenia for cortical thickness and area (t = 3.34), cortical (t=3.24) and ventricle (t range, 3.15-5.78) volumes, and hippocampal subfields (t range, 2.32-3.55). In the UK Biobank sample of 12 490 participants (mean [SD] age,55.9 [7.5] years; 48.2% male [n=6025] and 51.8% female [n=6465]), higher PRS was associated with thinner frontal and temporal cortices and smaller left CA2/3 (t=-3.00) but was not significantly associated with dispersion. Conclusions and RelevanceThis study suggests that schizophrenia is associated with substantial brain structural heterogeneity beyond the mean differences. These findings may reflect higher sensitivity to environmental and genetic perturbations in patients, supporting the heterogeneous nature of schizophrenia. A higher PRS was associated with thinner frontotemporal cortices and smaller hippocampal subfield volume, but not heterogeneity. This finding suggests that brain variability in schizophrenia results from interactions between environmental and genetic factors that are not captured by the PRS. Factors contributing to heterogeneity in frontotemporal cortices and hippocampus are key to furthering our understanding of how genetic and environmental factors shape brain biology in schizophrenia.
  •  
3.
  • Erhardt, Tobias, et al. (författare)
  • Decadal-scale progression of the onset of Dansgaard-Oeschger warming events
  • 2019
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 15:2, s. 811-825
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last glacial period, proxy records throughout the Northern Hemisphere document a succession of rapid millennial-scale warming events, called Dansgaard-Oeschger (DO) events. A range of different mechanisms has been proposed that can produce similar warming in model experiments; however, the progression and ultimate trigger of the events are still unknown. Because of their fast nature, the progression is challenging to reconstruct from paleoclimate data due to the limited temporal resolution achievable in many archives and cross-dating uncertainties between records. Here, we use new high-resolution multi-proxy records of sea-salt (derived from sea spray and sea ice over the North Atlantic) and terrestrial (derived from the central Asian deserts) aerosol concentrations over the period 10-60 ka from the North Greenland Ice Core Project (NGRIP) and North Greenland Eemian Ice Drilling (NEEM) ice cores in conjunction with local precipitation and temperature proxies from the NGRIP ice core to investigate the progression of environmental changes at the onset of the warming events at annual to multi-annual resolution. Our results show on average a small lead of the changes in both local precipitation and terrestrial dust aerosol concentrations over the change in sea-salt aerosol concentrations and local temperature of approximately one decade. This suggests that, connected to the reinvigoration of the Atlantic meridional overturning circulation and the warming in the North Atlantic, both synoptic and hemispheric atmospheric circulation changes at the onset of the DO warming, affecting both the moisture transport to Greenland and the Asian monsoon systems. Taken at face value, this suggests that a collapse of the sea-ice cover may not have been the initial trigger for the DO warming.
  •  
4.
  • Erhardt, Tobias, et al. (författare)
  • High-resolution aerosol concentration data from the Greenland NorthGRIP and NEEM deep ice cores
  • 2022
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 14:3, s. 1215-1231
  • Tidskriftsartikel (refereegranskat)abstract
    • Records of chemical impurities from ice cores enable us to reconstruct the past deposition of aerosols onto polar ice sheets and alpine glaciers. Through this they allow us to gain insight into changes of the source, transport and deposition processes that ultimately determine the deposition flux at the coring location. However, the low concentrations of the aerosol species in the ice and the resulting high risk of contamination pose a formidable analytical challenge, especially if long, continuous and highly resolved records are needed. Continuous flow analysis, CFA, the continuous melting, decontamination and analysis of ice-core samples has mostly overcome this issue and has quickly become the de facto standard to obtain high-resolution aerosol records from ice cores after its inception at the University of Bern in the mid-1990s.Here, we present continuous records of calcium (Ca2+), sodium (Na+), ammonium (NH+4), nitrate (NO-3) and electrolytic conductivity at 1 mm depth resolution from the NGRIP (North Greenland Ice Core Project) and NEEM (North Greenland Eemian Ice Drilling) ice cores produced by the Bern Continuous Flow Analysis group in the years 2000 to 2011 (Erhardt et al., 2021). Both of the records were previously used in a number of studies but were never published in full 1 mm resolution. Alongside the 1 mm datasets we provide decadal averages, a detailed description of the methods, relevant references, an assessment of the quality of the data and its usable resolution. Along the way we will also give some historical context on the development of the Bern CFA system.
  •  
5.
  • Erhardt, Tobias, et al. (författare)
  • High-resolution aerosol data from the top 3.8kyr of the East Greenland Ice coring Project (EGRIP) ice core
  • 2023
  • Ingår i: Earth System Science Data. - 1866-3508. ; 15:11, s. 5079-5091
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we present the high-resolution continuous flow analysis (CFA) data from the top 479m of the East Greenland Ice coring Project (EGRIP) ice core covering the past 3.8kyr. The data consist of 1mm depth-resolution profiles of calcium, sodium, ammonium, nitrate, and electrolytic conductivity as well as decadal averages of these profiles. The nominally 1mm data represent an oversampling of the record as the true resolution is limited by the analytical setup to approximately 1cm. Alongside the data we provide a description of the measurement setup, procedures, the relevant references for the specific methods as well as an assessment of the precision of the measurements, the sample-to-depth assignment, and the depth and temporal resolution of the data set. The error in absolute depth assignment of the data may be on the order of 2cm; however, relative depth offsets between the records of the individual species are only on the order of 1mm. The presented data have sub-annual resolution over the entire depth range and have already formed part of the data for an annually layer-counted timescale for the EGRIP ice core used to improve and revise the multi-core Greenland ice-core chronology (GICC05) to a new version, GICC21 . The data are available in full 1mm resolution and decadal averages on PANGAEA (10.1594/PANGAEA.945293, ).
  •  
6.
  • Kaufmann, Tobias, et al. (författare)
  • Common brain disorders are associated with heritable patterns of apparent aging of the brain
  • 2019
  • Ingår i: Nature Neuroscience. - : Nature Publishing Group. - 1097-6256 .- 1546-1726. ; 22:10, s. 1617-
  • Tidskriftsartikel (refereegranskat)abstract
    • Common risk factors for psychiatric and other brain disorders are likely to converge on biological pathways influencing the development and maintenance of brain structure and function across life. Using structural MRI data from 45,615 individuals aged 3-96 years, we demonstrate distinct patterns of apparent brain aging in several brain disorders and reveal genetic pleiotropy between apparent brain aging in healthy individuals and common brain disorders.
  •  
7.
  • Larsson, Cornelia, et al. (författare)
  • Facial affect recognition in first-episode psychosis is impaired but not associated with psychotic symptoms.
  • 2022
  • Ingår i: Heliyon. - : Elsevier. - 2405-8440. ; 8:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Social dysfunction is a key feature of psychotic disorders such as schizophrenia linked to disability. Less is known about social functioning in the early stages of the disorder and if there is an association to psychotic symptoms.Aims: Investigate if antipsychotic drug-naïve or briefly medicated individuals with first-episode psychosis (FEP), have impaired facial affect recognition (FAR) compared to control participants and if psychotic symptoms are associated with the FAR ability.Method: Individuals with FEP (n = 67) and control participants (n = 51) performed a computer-aided FAR task on basic emotions. Psychotic symptoms were assessed with the Positive and Negative Syndrome Scale (PANSS). Group performances were compared using age and gender as covariates. The associations between FAR and performance on the subscales of PANSS were analyzed.Results: Compared to control participants, individuals with FEP were impaired in general FAR (Beta = -2.04 [95 % conf: -3.75/-1.62], p < 0.001) and FAR of negative emotions (Beta = -1.74 [95 % conf: -3.08/-1.22], p < 0.001), driven by difficulties in recognition of anger and disgust. In both groups, there was a pattern of mistaking negative emotions for other negative emotions. There were no significant group differences in FAR of happiness. No significant associations between FAR and psychotic symptoms were observed.Discussion: The results indicate that FAR, an underlying mechanism of social functioning is impaired early in the course of psychotic disorders. Current findings do not support the hypothesis that misinterpretation of facial expressions in individuals with FEP underlies or contributes to symptoms of psychosis.
  •  
8.
  • Paleari, Chiara I., et al. (författare)
  • Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • During solar storms, the Sun expels large amounts of energetic particles (SEP) that can react with the Earth’s atmospheric constituents and produce cosmogenic radionuclides such as 14C, 10Be and 36Cl. Here we present 10Be and 36Cl data measured in ice cores from Greenland and Antarctica. The data consistently show one of the largest 10Be and 36Cl production peaks detected so far, most likely produced by an extreme SEP event that hit Earth 9125 years BP (before present, i.e., before 1950 CE), i.e., 7176 BCE. Using the 36Cl/10Be ratio, we demonstrate that this event was characterized by a very hard energy spectrum and was possibly up to two orders of magnitude larger than any SEP event during the instrumental period. Furthermore, we provide 10Be-based evidence that, contrary to expectations, the SEP event occurred near a solar minimum.
  •  
9.
  • Paleari, Chiara I., et al. (författare)
  • Evaluating the 11-year solar cycle and short-Term 10Be deposition events with novel excess water samples from the East Greenland Ice-core Project (EGRIP)
  • 2023
  • Ingår i: Climate of the Past. - 1814-9324. ; 19:11, s. 2409-2422
  • Tidskriftsartikel (refereegranskat)abstract
    • 10Be is produced by the interaction between galactic cosmic rays (GCRs) and solar energetic particles (SEPs) with the Earth's atmospheric constituents. The flux of GCRs is modulated by the varying strength of the magnetic fields of the Earth and the Sun. Measurement of 10Be concentrations from polar ice cores is thus a valuable tool to reconstruct the variations in the geomagnetic field and solar activity levels. The interpretation of 10Be records is, however, complicated by non-production-related effects on the 10Be deposition rate caused by climate-or weather-induced variability. Furthermore, volcanic eruptions have been proposed to lead to short-Term 10Be deposition enhancements. In this study, we test the use of excess meltwater from continuous flow analysis (CFA) to measure 10Be, allowing less time-consuming and more cost-effective sample preparation. We compare two records obtained from CFA and discrete samples from the East Greenland Ice core Project (EGRIP) S6 firn core, reaching back to 1900gCE. We find that the two records agree well and that the 10Be record from CFA samples agrees as well as the discrete samples with other records from Greenland. Furthermore, by subtracting the theoretically expected GCR-induced signal, we investigate the high-frequency variability in the 10Be records from Greenland and Antarctica after 1951gCE, focusing on SEP events and volcanic eruptions. Finally, we use the 10Be records from Greenland and Antarctica to study the 11-year solar cycles, allowing us to assess the suitability of the CFA samples for the reconstruction of solar activity. This result opens new opportunities for the collection of continuous 10Be records with less time-consuming sample preparation, while saving an important portion of the ice cores for other measurements.
  •  
10.
  • Sinnl, Giulia, et al. (författare)
  • A multi-ice-core, annual-layer-counted Greenland ice-core chronology for the last 3800 years : GICC21
  • 2022
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 18:5, s. 1125-1150
  • Tidskriftsartikel (refereegranskat)abstract
    • Ice-core timescales are vital for the understanding of past climate; hence they should be updated whenever significant amounts of new data become available. Here, the Greenland ice-core chronology GICC05 was revised for the last 3835 years by synchronizing six deep ice cores and three shallow ice cores from the central Greenland ice sheet. A new method was applied by combining automated counting of annual layers on multiple parallel proxies and manual fine-tuning. A layer counting bias was found in all ice cores because of site-specific signal disturbances; therefore the manual comparison of all ice cores was deemed necessary to increase timescale accuracy. After examining sources of error and their correlation lengths, the uncertainty rate was quantified to be 1 year per century. The new timescale is younger than GICC05 by about 13 years at 3835 years ago. The most recent 800 years are largely unaffected by the revision. Between 800 and 2000 years ago, the offset between timescales increases steadily, with the steepest offset occurring between 800 and 1100 years ago. Moreover, offset oscillations of about 5 years around the average are observed between 2500 and 3800 years ago. The non-linear offset behavior is attributed to previous mismatches of volcanic eruptions, to the much more extensive dataset available to this study, and to the finer resolution of the new ice-core ammonium matching. By analysis of the common variations in cosmogenic radionuclides, the new ice-core timescale is found to be in alignment with the IntCal20 curve (Reimer et al., 2020).
  •  
11.
  • Svensson, Anders, et al. (författare)
  • Bipolar volcanic synchronization of abrupt climate change in Greenland and Antarctic ice cores during the last glacial period
  • 2020
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 16:4, s. 1565-1580
  • Tidskriftsartikel (refereegranskat)abstract
    • The last glacial period is characterized by a number of millennial climate events that have been identified in both Greenland and Antarctic ice cores and that are abrupt in Greenland climate records. The mechanisms governing this climate variability remain a puzzle that requires a precise synchronization of ice cores from the two hemispheres to be resolved. Previously, Greenland and Antarctic ice cores have been synchronized primarily via their common records of gas concentrations or isotopes from the trapped air and via cosmogenic isotopes measured on the ice. In this work, we apply ice core volcanic proxies and annual layer counting to identify large volcanic eruptions that have left a signature in both Greenland and Antarctica. Generally, no tephra is associated with those eruptions in the ice cores, so the source of the eruptions cannot be identified. Instead, we identify and match sequences of volcanic eruptions with bipolar distribution of sulfate, i.e. unique patterns of volcanic events separated by the same number of years at the two poles. Using this approach, we pinpoint 82 large bipolar volcanic eruptions throughout the second half of the last glacial period (12-60ka). This improved ice core synchronization is applied to determine the bipolar phasing of abrupt climate change events at decadal-scale precision. In response to Greenland abrupt climatic transitions, we find a response in the Antarctic water isotope signals (δ18O and deuterium excess) that is both more immediate and more abrupt than that found with previous gas-based interpolar synchronizations, providing additional support for our volcanic framework. On average, the Antarctic bipolar seesaw climate response lags the midpoint of Greenland abrupt δ18O transitions by 122±24 years. The time difference between Antarctic signals in deuterium excess and δ18O, which likewise informs the time needed to propagate the signal as described by the theory of the bipolar seesaw but is less sensitive to synchronization errors, suggests an Antarctic δ18O lag behind Greenland of 152±37 years. These estimates are shorter than the 200 years suggested by earlier gas-based synchronizations. As before, we find variations in the timing and duration between the response at different sites and for different events suggesting an interaction of oceanic and atmospheric teleconnection patterns as well as internal climate variability.
  •  
12.
  • Zheng, Minjie, et al. (författare)
  • Solar, Atmospheric, and Volcanic Impacts on 10Be Depositions in Greenland and Antarctica During the Last 100 Years
  • 2023
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-8996. ; 128:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Cosmogenic radionuclides (e.g., 10Be) from ice cores are a powerful tool for solar reconstructions back in time. However, superimposed on the solar signal, other factors like weather/climate and volcanic influences on 10Be can complicate the interpretation of 10Be data. A comprehensive study of 10Be records over the recent period, when atmospheric 10Be production and meteorological conditions are relatively well-known, can improve our interpretation of 10Be records. Here we conduct a systematic study of the production and climate/volcanic signals in Antarctica and Greenland 10Be records, including a new 10Be record from the East GReenland Ice-core Project site. Greenland and Antarctica records show significant decreasing trends (5%–6.5%/decade) for 1900–1950, which is comparable with the expected production rate inferred from sunspot observations. By comparing 10Be records with reanalysis data and atmospheric circulation patterns, 10Be records from Southern/Southeastern Greenland are significantly correlated with the Scandinavia pattern. Stacking 10Be records from different locations can enhance the production signal. However, this approach is not always straightforward as uncertainties in some records can lead to a weaker solar signal. A strategy can be employed to select records for the bipolar stack by comparing Greenland records with Antarctica records, assuming the shared signal is a production signal. Finally, we observe significant increases (36%–64%) in 10Be depositions in Greenland related to the Agung eruption. This large increase in Greenland 10Be records after the Agung eruption, could be partly explained by the enhanced air mass transport from mid-latitudes coinciding with the decreased precipitation en-route.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy