SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ernberg I) "

Sökning: WFRF:(Ernberg I)

  • Resultat 1-25 av 148
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dmitriev, Alexey A, et al. (författare)
  • Genetic and epigenetic analysis of non-small cell lung cancer with NotI-microarrays
  • 2012
  • Ingår i: Epigenetics. - : Landes Bioscience. - 1559-2294 .- 1559-2308. ; 7:5, s. 502-513
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to clarify genetic and epigenetic alterations that occur during lung carcinogenesis and to design perspective sets of newly identified biomarkers. The original method includes chromosome 3 specific NotI-microarrays containing 180 NotI clones associated with genes for hybridization with 40 paired normal/tumor DNA samples of primary lung tumors: 28 squamous cell carcinomas (SCC) and 12 adenocarcinomas (ADC). The NotI-microarray data were confirmed by qPCR and bisulfite sequencing analyses. Forty-four genes showed methylation and/or deletions in more than 15% of non-small cell lung cancer (NSCLC) samples. In general, SCC samples were more frequently methylated/deleted than ADC. Moreover, the SCC alterations were observed already at stage I of tumor development, whereas in ADC many genes showed tumor progression specific methylation/deletions. Among genes frequently methylated/deleted in NSCLC, only a few were already known tumor suppressor genes: RBSP3 (CTDSPL), VHL and THRB. The RPL32, LOC285205, FGD5 and other genes were previously not shown to be involved in lung carcinogenesis. Ten methylated genes, i.e., IQSEC1, RBSP3, ITGA9, FOXP1, LRRN1, GNAI2, VHL, FGD5, ALDH1L1 and BCL6 were tested for expression by qPCR and were found downregulated in the majority of cases. Three genes (RBSP3, FBLN2 and ITGA9) demonstrated strong cell growth inhibition activity. A comprehensive statistical analysis suggested the set of 19 gene markers, ANKRD28, BHLHE40, CGGBP1, RBSP3, EPHB1, FGD5, FOXP1, GORASP1/TTC21, IQSEC1, ITGA9, LOC285375, LRRC3B, LRRN1, MITF, NKIRAS1/RPL15, TRH, UBE2E2, VHL, WNT7A, to allow early detection, tumor progression, metastases and to discriminate between SCC and ADC with sensitivity and specificity of 80-100%.
  •  
2.
  •  
3.
  • Rajnavolgyi, E, et al. (författare)
  • A repetitive sequence of Epstein-Barr virus nuclear antigen 6 comprises overlapping T cell epitopes which induce HLA-DR-restricted CD4(+) T lymphocytes
  • 2000
  • Ingår i: International Immunology. - : Oxford University Press (OUP). - 1460-2377 .- 0953-8178. ; 12:3, s. 281-293
  • Tidskriftsartikel (refereegranskat)abstract
    • Most human adults carry the Epstein-Barr virus (EBV) and develop immunological memory against the structural and the virus-encoded cellular proteins. The EBV nuclear antigen 6 (EBNA6) elicits cytotoxic T cell responses and it also maintains a persistent antibody response. The majority of sera from EBV-seropositive individuals reacts with a synthetic peptide, p63, comprising 21 amino acids of a repetitive region of EBNA6. CD4(+) T lymphocytes, with specificity for p63, could be recalled from the T cell repertoire of EBV carriers that expressed certain HLA-DR allotypes which were identified as good binders of p63 by an in vitro flow cytometric assay. Analysis of the HLA-DR/p63 interaction by molecular mechanics calculations indicated the presence of multiple overlapping epitopes which were predicted to bind in a HLA-DRB1 allo- and subtype-specific manner. Specific activation of p63-selected long-term CD4(+) T cell cultures resulted in a proliferative response, in the production of IL-2 and in the secretion of high levels of tumor necrosis factor as measured by bioassays. Proliferation and cytokine production of p63-specific T cells could be induced by p63-loaded HLA-DR-matched antigen-presenting cells and by B cells co-expressing relevant HLA-DR molecules and EBNA6. Our results show that peptides of an EBNA6 repeat region induce CD4(+) T cells which can react with EBNA6-carrying cells in many individuals. We suggest that these T(h) cells may be important in conditioning dendritic cells for initiation potent virus-specific immune responses, provide help for EBV-specific B cells, drive IgG isotype switch and support the sustained effector function of memory cytotoxic T lymphocytes.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • Tamborero, D, et al. (författare)
  • The Molecular Tumor Board Portal supports clinical decisions and automated reporting for precision oncology
  • 2022
  • Ingår i: Nature cancer. - : Springer Science and Business Media LLC. - 2662-1347. ; 3:2, s. 251-
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a growing need for systems that efficiently support the work of medical teams at the precision-oncology point of care. Here, we present the implementation of the Molecular Tumor Board Portal (MTBP), an academic clinical decision support system developed under the umbrella of Cancer Core Europe that creates a unified legal, scientific and technological platform to share and harness next-generation sequencing data. Automating the interpretation and reporting of sequencing results decrease the need for time-consuming manual procedures that are prone to errors. The adoption of an expert-agreed process to systematically link tumor molecular profiles with clinical actions promotes consistent decision-making and structured data capture across the connected centers. The use of information-rich patient reports with interactive content facilitates collaborative discussion of complex cases during virtual molecular tumor board meetings. Overall, streamlined digital systems like the MTBP are crucial to better address the challenges brought by precision oncology and accelerate the use of emerging biomarkers.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Almqvist, J, et al. (författare)
  • Functional interaction of Oct transcription factors with the family of repeats in Epstein-Barr virus oriP.
  • 2005
  • Ingår i: The Journal of general virology. - : Microbiology Society. - 0022-1317 .- 1465-2099. ; 86:Pt 5, s. 1261-7
  • Tidskriftsartikel (refereegranskat)abstract
    • The family of repeats (FR) is a major upstream enhancer of the Epstein-Barr virus (EBV) latent C promoter (Cp) that controls transcription of six different latent nuclear proteins following interaction with the EBV nuclear protein EBNA1. Here, it was shown that Cp could also be activated by octamer-binding factor (Oct) proteins. Physical binding to the FR by the cellular transcription factors Oct-1 and Oct-2 was demonstrated by using an electrophoretic mobility-shift assay. Furthermore, Oct-1 in combination with co-regulator Bob.1, or Oct-2 alone, could drive transcription of a heterologous thymidine kinase promoter linked to the FR in both B cells and epithelial cells. Cp controlled by the FR was also activated by binding of Oct-2 to the FR. This may have direct implications for B cell-specific regulation of Cp.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 148

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy