SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Estall Jennifer) "

Sökning: WFRF:(Estall Jennifer)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferreira, Duarte M. S., et al. (författare)
  • LIM and cysteine-rich domains 1 (LMCD1) regulates skeletal muscle hypertrophy, calcium handling, and force
  • 2019
  • Ingår i: Skeletal Muscle. - : BioMed Central. - 2044-5040. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Skeletal muscle mass and strength are crucial determinants of health. Muscle mass loss is associated with weakness, fatigue, and insulin resistance. In fact, it is predicted that controlling muscle atrophy can reduce morbidity and mortality associated with diseases such as cancer cachexia and sarcopenia.Methods: We analyzed gene expression data from muscle of mice or human patients with diverse muscle pathologies and identified LMCD1 as a gene strongly associated with skeletal muscle function. We transiently expressed or silenced LMCD1 in mouse gastrocnemius muscle or in mouse primary muscle cells and determined muscle/cell size, targeted gene expression, kinase activity with kinase arrays, protein immunoblotting, and protein synthesis levels. To evaluate force, calcium handling, and fatigue, we transduced the flexor digitorum brevis muscle with a LMCD1-expressing adenovirus and measured specific force and sarcoplasmic reticulum Ca2+ release in individual fibers. Finally, to explore the relationship between LMCD1 and calcineurin, we ectopically expressed Lmcd1 in the gastrocnemius muscle and treated those mice with cyclosporine A (calcineurin inhibitor). In addition, we used a luciferase reporter construct containing the myoregulin gene promoter to confirm the role of a LMCD1-calcineurin-myoregulin axis in skeletal muscle mass control and calcium handling.Results: Here, we identify LIM and cysteine-rich domains 1 (LMCD1) as a positive regulator of muscle mass, that increases muscle protein synthesis and fiber size. LMCD1 expression in vivo was sufficient to increase specific force with lower requirement for calcium handling and to reduce muscle fatigue. Conversely, silencing LMCD1 expression impairs calcium handling and force, and induces muscle fatigue without overt atrophy. The actions of LMCD1 were dependent on calcineurin, as its inhibition using cyclosporine A reverted the observed hypertrophic phenotype. Finally, we determined that LMCD1 represses the expression of myoregulin, a known negative regulator of muscle performance. Interestingly, we observed that skeletal muscle LMCD1 expression is reduced in patients with skeletal muscle disease.Conclusions: Our gain- and loss-of-function studies show that LMCD1 controls protein synthesis, muscle fiber size, specific force, Ca2+ handling, and fatigue resistance. This work uncovers a novel role for LMCD1 in the regulation of skeletal muscle mass and function with potential therapeutic implications.
  •  
2.
  • Slieker, Roderick C, et al. (författare)
  • Identification of biomarkers for glycaemic deterioration in type 2 diabetes
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14, s. 1-18
  • Tidskriftsartikel (refereegranskat)abstract
    • We identify biomarkers for disease progression in three type 2 diabetes cohorts encompassing 2,973 individuals across three molecular classes, metabolites, lipids and proteins. Homocitrulline, isoleucine and 2-aminoadipic acid, eight triacylglycerol species, and lowered sphingomyelin 42:2;2 levels are predictive of faster progression towards insulin requirement. Of ~1,300 proteins examined in two cohorts, levels of GDF15/MIC-1, IL-18Ra, CRELD1, NogoR, FAS, and ENPP7 are associated with faster progression, whilst SMAC/DIABLO, SPOCK1 and HEMK2 predict lower progression rates. In an external replication, proteins and lipids are associated with diabetes incidence and prevalence. NogoR/RTN4R injection improved glucose tolerance in high fat-fed male mice but impaired it in male db/db mice. High NogoR levels led to islet cell apoptosis, and IL-18R antagonised inflammatory IL-18 signalling towards nuclear factor kappa-B in vitro. This comprehensive, multi-disciplinary approach thus identifies biomarkers with potential prognostic utility, provides evidence for possible disease mechanisms, and identifies potential therapeutic avenues to slow diabetes progression.
  •  
3.
  • Yusta, Bernardo, et al. (författare)
  • ErbB Signaling Is Required for the Proliferative Actions of GLP-2 in the Murine Gut
  • 2009
  • Ingår i: Gastroenterology. - : Elsevier BV. - 0016-5085. ; 137:3, s. 986-996
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: Glucagon-like peptide-2 (GLP-2) is a 33-amino acid peptide hormone secreted by enteroendocrine cells in response to nutrient ingestion. GLP-2 stimulates crypt cell proliferation leading to expansion of the mucosal epithelium; however, the mechanisms transducing the trophic effects of GLP-2 are incompletely understood. Methods: We examined the gene expression profiles and growth-promoting actions of GLP-2 in normal mice in the presence or absence of an inhibitor of ErbB receptor signaling, in Glp2r-/- mice and in Egfrwa2 mice harboring a hypomorphic point mutation in the epidermal growth factor receptor. Results: Exogenous GLP-2 administration rapidly induced the expression of a subset of ErbB ligands including amphiregulin, epiregulin, and heparin binding (HB)-epidermal growth factor, in association with induction of immediate early gene expression in the small and large bowel. These actions of GLP-2 required a functional GLP-2 receptor because they were eliminated in Glp2r-/- mice. In contrast, insulin-like growth factor-I and keratinocyte growth factor, previously identified mediators of GLP-2 action, had no effect on the expression of these ErbB ligands. The GLP-2-mediated induction of ErbB ligand expression was not metalloproteinase inhibitor sensitive but was significantly diminished in Egfrwa2 mice and completed abrogated in wild-type mice treated with the pan-ErbB inhibitor CI-1033. Furthermore, the stimulatory actions of GLP-2 on crypt cell proliferation and bowel growth were eliminated in the presence of CI-1033. Conclusions: These findings identify the ErbB signaling network as a target for GLP-2 action leading to stimulation of growth factor-dependent signal transduction and bowel growth in vivo.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy