SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Esteban M.A.) "

Sökning: WFRF:(Esteban M.A.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buchanan, E. M., et al. (författare)
  • The Psychological Science Accelerator's COVID-19 rapid-response dataset
  • 2023
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data.
  •  
2.
  •  
3.
  • Fernández-Benito, A., et al. (författare)
  • Multifunctional metal-free rechargeable polymer composite nanoparticles boosted by CO2
  • 2020
  • Ingår i: Materials Today Sustainability. - : Elsevier BV. - 2589-2347. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, we present a multigram scale-up route for the preparation of novel polymer composite nanoparticles as potential multifunctional rechargeable material for future, sustainable batteries. The nanoparticles (20 nm) comprise three innocuous yet functional interpenetrated macromolecular networks: polypyrrole, methylcellulose, and lignin. They are uniquely assembled in strands or chains (∌200 nm) such as necklace beads and show long-term stability as water dispersion. We find that an aqueous suspension of this hierarchical nanomaterial shows two sets of reversible redox peaks, separated by ∌600 mV, originating from the catechol moieties present in the lignin biopolymer. Remarkably, the addition of carbon dioxide increased the capacity of one of the redox processes by 500%. Importantly, the three redox stages occur in the presence of the same nanostructured polymer so being a potentially bifunctional material to be used in advanced electrochemical systems. The new properties are attributed to an intrinsic chemical and electronic coupling at the nanoscale among the different building blocks of the metal-free polymer composite and the structural rearrangement of the interpenetrated polymer network by the incorporation of CO2. We have provided both a new electrochemically multifunctional hierarchically structured material and a facile route that could lead to novel sustainable energy applications.
  •  
4.
  • Garcia-Ayllon, M. S., et al. (författare)
  • Plasma ACE2 species are differentially altered in COVID-19 patients
  • 2021
  • Ingår i: FASEB Journal. - 0892-6638. ; 35:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies are needed to identify useful biomarkers to assess the severity and prognosis of COVID-19 disease, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus. Here, we examine the levels of various plasma species of the SARS-CoV-2 host receptor, the angiotensin-converting enzyme 2 (ACE2), in patients at different phases of the infection. Human plasma ACE2 species were characterized by immunoprecipitation and western blotting employing antibodies against the ectodomain and the C-terminal domain, using a recombinant human ACE2 protein as control. In addition, changes in the cleaved and full-length ACE2 species were also examined in serum samples derived from humanized K18-hACE2 mice challenged with a lethal dose of SARS-CoV-2. ACE2 immunoreactivity was present in human plasma as several molecular mass species that probably comprise truncated (70 and 75 kDa) and full-length forms (95, 100, 130, and 170 kDa). COVID-19 patients in the acute phase of infection (n = 46) had significantly decreased levels of ACE2 full-length species, while a truncated 70-kDa form was marginally higher compared with non-disease controls (n = 26). Levels of ACE2 full-length species were in the normal range in patients after a recovery period with an interval of 58-70 days (n = 29), while the 70-kDa species decreased. Levels of the truncated ACE2 species served to discriminate between individuals infected by SARS-CoV-2 and those infected with influenza A virus (n = 17). In conclusion, specific plasma ACE2 species are altered in patients with COVID-19 and these changes normalize during the recovery phase. Alterations in ACE2 species following SARS-CoV-2 infection warrant further investigation regarding their potential usefulness as biomarkers for the disease process and to asses efficacy during vaccination.
  •  
5.
  • Han, L., et al. (författare)
  • Cell transcriptomic atlas of the non-human primate Macaca fascicularis
  • 2022
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 604:7907, s. 723-731
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell–cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs. 
  •  
6.
  • Harreither, E., et al. (författare)
  • Characterization of a novel cell penetrating peptide derived from human Oct4
  • 2014
  • Ingår i: Cell Regeneration. - : Springer Science and Business Media LLC. - 2045-9769. ; 3:2, s. 2-3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Oct4 is a transcription factor that plays a major role for the preservation of the pluripotent state in embryonic stem cells as well as for efficient reprogramming of somatic cells to induced pluripotent stem cells (iPSC) or other progenitors. Protein-based reprogramming methods mainly rely on the addition of a fused cell penetrating peptide. This study describes that Oct4 inherently carries a protein transduction domain, which can translocate into human and mouse cells.A 16 amino acid peptide representing the third helix of the human Oct4 homeodomain, referred to as Oct4 protein transduction domain (Oct4-PTD), can internalize in mammalian cells upon conjugation to a fluorescence moiety thereby acting as a cell penetrating peptide (CPP). The cellular distribution of Oct4-PTD shows diffuse cytosolic and nuclear staining, whereas penetratin is strictly localized to a punctuate pattern in the cytoplasm. By using a Cre/loxP-based reporter system, we show that this peptide also drives translocation of a functionally active Oct4-PTD-Cre-fusion protein. We further provide evidence for translocation of full length Oct4 into human and mouse cell lines without the addition of any kind of cationic fusion tag. Finally, physico-chemical properties of the novel CPP are characterized, showing that in contrast to penetratin a helical structure of Oct4-PTD is only observed if the FITC label is present on the N-terminus of the peptide.Oct4 is a key transcription factor in stem cell research and cellular reprogramming. Since it has been shown that recombinant Oct4 fused to a cationic fusion tag can drive generation of iPSCs, our finding might contribute to further development of protein-based methods to generate iPSCs.Moreover, our data support the idea that transcription factors might be part of an alternative paracrine signalling pathway, where the proteins are transferred to neighbouring cells thereby actively changing the behaviour of the recipient cell.
  •  
7.
  •  
8.
  • Kenna, Kevin P., et al. (författare)
  • NEK1 variants confer susceptibility to amyotrophic lateral sclerosis
  • 2016
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:9, s. 1037-1042
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted whole-exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a new screening strategy, we performed gene-burden analyses trained with established ALS genes and identified a significant association between loss-of-function (LOF) NEK1 variants and FALS risk. Independently, autozygosity mapping for an isolated community in the Netherlands identified a NEK1 p.Arg261 His variant as a candidate risk factor. Replication analyses of sporadic ALS (SALS) cases and independent control cohorts confirmed significant disease association for both p.Arg261 His (10,589 samples analyzed) and NEK1 LOF variants (3,362 samples analyzed). In total, we observed NEK1 risk variants in nearly 3% of ALS cases. NEK1 has been linked to several cellular functions, including cilia formation, DNA-damage response, microtubule stability, neuronal morphology and axonal polarity. Our results provide new and important insights into ALS etiopathogenesis and genetic etiology.
  •  
9.
  • Nicolas, Aude, et al. (författare)
  • Genome-wide Analyses Identify KIF5A as a Novel ALS Gene
  • 2018
  • Ingår i: Neuron. - : Cell Press. - 0896-6273 .- 1097-4199. ; 97:6, s. 1268-1283.e6
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (9)
Typ av innehåll
refereegranskat (8)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Andersen, Peter M. (2)
Al-Chalabi, Ammar (2)
Shatunov, Aleksey (2)
D'Alfonso, Sandra (2)
Hardiman, Orla (2)
Silani, Vincenzo (2)
visa fler...
Ticozzi, Nicola (2)
Veldink, Jan H. (2)
van den Berg, Leonar ... (2)
Shaw, Christopher E. (2)
Shaw, Pamela J. (2)
Morrison, Karen E. (2)
Landers, John E. (2)
Glass, Jonathan D. (2)
Taroni, Franco (2)
van Blitterswijk, Ma ... (2)
van Rheenen, Wouter (2)
Talbot, Kevin (2)
Ratti, Antonia (2)
Rouleau, Guy A. (2)
Rademakers, Rosa (2)
Al-Sarraj, Safa (2)
King, Andrew (2)
Nordén, Bengt, 1945 (2)
Isern, J. (2)
Meitinger, Thomas (2)
Ludolph, Albert C. (2)
Corrado, Lucia (2)
Troakes, Claire (2)
Weishaupt, Jochen H. (2)
Strom, Tim M. (2)
Robberecht, Wim (2)
Turner, Martin R (2)
Mora, Gabriele (2)
Calvo, Andrea (2)
van Es, Michael A (2)
McLaughlin, Russell ... (2)
Sapp, Peter C (2)
Grillari, J (2)
Cereda, Cristina (2)
McKenna-Yasek, Diane (2)
Polak, Meraida (2)
Comi, Giacomo P (2)
Williams, Kelly L (2)
Nicholson, Garth A (2)
Blair, Ian P (2)
Verde, Federico (2)
Brown, Robert H., Jr ... (2)
Baas, Frank (2)
Borth, N. (2)
visa färre...
Lärosäte
Göteborgs universitet (2)
Umeå universitet (2)
Uppsala universitet (2)
Chalmers tekniska högskola (2)
Karolinska Institutet (2)
Kungliga Tekniska Högskolan (1)
visa fler...
Stockholms universitet (1)
visa färre...
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)
Naturvetenskap (3)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy