SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ezcurra Inés) "

Sökning: WFRF:(Ezcurra Inés)

  • Resultat 1-25 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bollhöner, Benjamin, et al. (författare)
  • The function of two type II metacaspases in woody tissues of Populus trees
  • 2018
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 217:4, s. 1551-1565
  • Tidskriftsartikel (refereegranskat)abstract
    • Metacaspases (MCs) are cysteine proteases that are implicated in programmed cell death of plants. AtMC9 (Arabidopsis thaliana Metacaspase9) is a member of the Arabidopsis MC family that controls the rapid autolysis of the xylem vessel elements, but its downstream targets in xylem remain uncharacterized. PttMC13 and PttMC14 were identified as AtMC9 homologs in hybrid aspen (Populustremulaxtremuloides). A proteomic analysis was conducted in xylem tissues of transgenic hybrid aspen trees which carried either an overexpression or an RNA interference construct for PttMC13 and PttMC14. The proteomic analysis revealed modulation of levels of both previously known targets of metacaspases, such as Tudor staphylococcal nuclease, heat shock proteins and 14-3-3 proteins, as well as novel proteins, such as homologs of the PUTATIVE ASPARTIC PROTEASE3 (PASPA3) and the cysteine protease RD21 by PttMC13 and PttMC14. We identified here the pathways and processes that are modulated by PttMC13 and PttMC14 in xylem tissues. In particular, the results indicate involvement of PttMC13 and/or PttMC14 in downstream proteolytic processes and cell death of xylem elements. This work provides a valuable reference dataset on xylem-specific metacaspase functions for future functional and biochemical analyses.
  •  
2.
  • Dalman, Kerstin, et al. (författare)
  • Overexpression of PaNAC03, a stress induced NAC gene family transcription factor in Norway spruce leads to reduced flavonol biosynthesis and aberrant embryo development
  • 2017
  • Ingår i: BMC Plant Biology. - : BioMed Central. - 1471-2229. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The NAC family of transcription factors is one of the largest gene families of transcription factors in plants and the conifer NAC gene family is at least as large, or possibly larger, as in Arabidopsis. These transcription factors control both developmental and stress induced processes in plants. Yet, conifer NACs controlling stress induced processes has received relatively little attention. This study investigates NAC family transcription factors involved in the responses to the pathogen Heterobasidion annosum (Fr.) Bref. sensu lato. Results: The phylogeny and domain structure in the NAC proteins can be used to organize functional specificities, several well characterized stress-related NAC proteins are found in III-3 in Arabidopsis (Jensen et al. Biochem J 426: 183-196, 2010). The Norway spruce genome contain seven genes with similarity to subgroup III-3 NACs. Based on the expression pattern PaNAC03 was selected for detailed analyses. Norway spruce lines overexpressing PaNAC03 exhibited aberrant embryo development in response to maturation initiation and 482 misregulated genes were identified in proliferating cultures. Three key genes in the flavonoid biosynthesis pathway: a CHS, a F3'H and PaLAR3 were consistently down regulated in the overexpression lines. In accordance, the overexpression lines showed reduced levels of specific flavonoids, suggesting that PaNAC03 act as a repressor of this pathway, possibly by directly interacting with the promoter of the repressed genes. However, transactivation studies of PaNAC03 and PaLAR3 in Nicotiana benthamiana showed that PaNAC03 activated PaLAR3A, suggesting that PaNAC03 does not act as an independent negative regulator of flavan-3-ol production through direct interaction with the target flavonoid biosynthetic genes. Conclusions: PaNAC03 and its orthologs form a sister group to well characterized stress-related angiosperm NAC genes and at least PaNAC03 is responsive to biotic stress and appear to act in the control of defence associated secondary metabolite production.
  •  
3.
  • Derba-Maceluch, Marta, et al. (författare)
  • Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood
  • 2015
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 205:2, s. 666-681
  • Tidskriftsartikel (refereegranskat)abstract
    • Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary-wall specific PtxtXyn10A in hybrid aspen (Populus tremulaxtremuloides).PtxtXyn10A function was analysed by expression studies, overexpression in Arabidopsis protoplasts and by downregulation in aspen.PtxtXyn10A overexpression in Arabidopsis protoplasts resulted in increased xylan endotransglycosylation rather than hydrolysis. In aspen, the enzyme was found to be proteolytically processed to a 68kDa peptide and residing in cell walls. Its downregulation resulted in a corresponding decrease in xylan endotransglycosylase activity and no change in xylanase activity. This did not alter xylan molecular weight or its branching pattern but affected the cellulose-microfibril angle in wood fibres, increased primary growth (stem elongation, leaf formation and enlargement) and reduced the tendency to form tension wood. Transcriptomes of transgenic plants showed downregulation of tension wood related genes and changes in stress-responsive genes. The data indicate that PtxtXyn10A acts as a xylan endotransglycosylase and its main function is to release tensional stresses arising during secondary wall deposition. Furthermore, they suggest that regulation of stresses in secondary walls plays a vital role in plant development.
  •  
4.
  • Eklund, Magnus, et al. (författare)
  • The Arabidopsis thaliana STYLISH1 Protein Acts as a Transcriptional Activator Regulating Auxin Biosynthesis
  • 2010
  • Ingår i: The Plant Cell. - : Oxford University Press (OUP). - 1040-4651 .- 1532-298X. ; 22:2, s. 349-363
  • Tidskriftsartikel (refereegranskat)abstract
    • The establishment and maintenance of auxin maxima in vascular plants is regulated by auxin biosynthesis and polar intercellular auxin flow. The disruption of normal auxin biosynthesis in mouse-ear cress ( Arabidopsis thaliana) leads to severe abnormalities, suggesting that spatiotemporal regulation of auxin biosynthesis is fundamental for normal growth and development. We have shown previously that the induction of the SHORT-INTERNODES/STYLISH (SHI/STY) family member STY1 results in increased transcript levels of the YUCCA (YUC) family member YUC4 and also higher auxin levels and auxin biosynthesis rates in Arabidopsis seedlings. We have also shown previously that SHI/STY family members redundantly affect development of flowers and leaves. Here, we further examine the function of STY1 by analyzing its DNA and protein binding properties. Our results suggest that STY1, and most likely other SHI/STY members, are DNA binding transcriptional activators that target genes encoding proteins mediating auxin biosynthesis. This suggests that the SHI/STY family members are essential regulators of auxin-mediated leaf and flower development. Furthermore, the lack of a shoot apical meristem in seedlings carrying a fusion construct between STY1 and a repressor domain, SRDX, suggests that STY1, and other SHI/STY members, has a role in the formation and/or maintenance of the shoot apical meristem, possibly by regulating auxin levels in the embryo.
  •  
5.
  •  
6.
  • Ezcurra, Inés, et al. (författare)
  • Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements : B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box
  • 2000
  • Ingår i: The Plant Journal. - : Wiley. - 0960-7412 .- 1365-313X. ; 24:1, s. 57-66
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcriptional activator ABI3 is a key regulator of gene expression during embryo maturation in crucifers. In monocots, the related VP1 protein regulates the Em promoter synergistically with abscisic acid (ABA). We identified cis-elements in the Brassica napus napin napA promoter mediating regulation by ABI3 and ABA, by analyzing substitution mutation constructs of napA in transgenic tobacco plantlets ectopically expressing ABI3. In transient analysis using particle bombardment of tobacco leaf sections, a tetramer of the distB ABRE (abscisic acid-responsive element) mediated transactivation by ABI3 and ABI3-dependent response to ABA, whereas a tetramer of the composite RY/G complex, containing RY repeats and a G-box, mediated only ABA-independent transactivation by ABI3. Deletion of the conserved B2 and B3 domains of ABI3 abolished transactivation of napA by ABI3. The two domains of ABI3 interact with different cis-elements: B2 is necessary for ABA-independent and ABA-dependent activations through the distB ABRE, whereas B3 interacts with the RY/G complex. Thus B2 mediates the interaction of ABI3 with the protein complex at the ABRE. The regulation of napA by ABI3 differs from Em regulation by VP1, in that the B3 domain of ABI3 is essential for the ABA-dependent regulation of napA.
  •  
7.
  •  
8.
  • Fugelstad, Johanna, et al. (författare)
  • Identification of the cellulose synthase genes from the Oomycete Saprolegnia monoica and effect of cellulose synthesis inhibitors on gene expression and enzyme activity
  • 2009
  • Ingår i: Fungal Genetics and Biology. - : Elsevier BV. - 1087-1845 .- 1096-0937. ; 46:10, s. 759-767
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose biosynthesis is a vital but yet poorly understood biochemical process in Oomycetes. Here, we report the identification and characterization of the cellulose synthase genes (CesA) from Saprolegnia monoica. Southern blot experiments revealed the occurrence of three CesA homologues in this species and phylogenetic analyses confirmed that Oomycete CesAs form a clade of their own. All gene products contained the D,D,D,QXXRW signature of most processive glycosyltransferases, including cellulose synthases. However, their N-terminal ends exhibited Oomycete-specific domains, i.e. Pleckstrin Homology domains, or conserved domains of an unknown function together with additional putative transmembrane domains. Mycelial growth was inhibited in the presence of the cellulose biosynthesis inhibitors 2,6-dichlorobenzonitrile or Congo Red. This inhibition was accompanied by a higher expression of all CesA genes in the mycelium and increased in vitro glucan synthase activities. Altogether, our data strongly suggest a direct involvement of the identified CesA genes in cellulose biosynthesis.
  •  
9.
  •  
10.
  • Guerriera, Gea, et al. (författare)
  • The RY/Sph element mediates transcriptional repression of MAT genes from late maturation to early seedling growth
  • 2009
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 184:3, s. 552-565
  • Tidskriftsartikel (refereegranskat)abstract
    • P>In orthodox seeds, the transcriptional activator ABI3 regulates two   major stages in embryo maturation: a mid-maturation (MAT) stage leading   to accumulation of storage compounds, and a late maturation (LEA) stage   leading to quiescence and desiccation tolerance. Our aim was to   elucidate mechanisms for transcriptional shutdown of MAT genes during   late maturation, to better understand phase transition between MAT and   LEA stages.   Using transgenic and transient approaches in Nicotiana, we examined   activities of two ABI3-dependent reporter genes driven by multimeric RY   and abscisic acid response elements (ABREs) from a Brassica napus napin   gene, termed RY and ABRE, where the RY reporter requires ABI3 DNA   binding.   Expression of RY peaks during mid-maturation and drops during late   maturation, mimicking the MAT gene program, and in Arabidopsis thaliana   RY elements are over-represented in MAT, but not in LEA, genes. The   ABI3 transactivation of RY is inhibited by staurosporine, by a PP2C   phosphatase, and by a repressor of maturation genes, VAL1/HSI2.   The RY element mediates repression of MAT genes, and we propose that   transcriptional shutdown of the MAT program during late maturation   involves inhibition of ABI3 DNA binding by dephosphorylation. Later,   during seedling growth, VAL1/HSI2 family repressors silence MAT genes by binding RY elements.
  •  
11.
  • Guerriero, Gea, et al. (författare)
  • A WDR gene is a conserved member of a chitin synthase gene cluster and influences the cell wall in Aspergillus nidulans
  • 2016
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 17:7, s. 1031-
  • Tidskriftsartikel (refereegranskat)abstract
    • WD40 repeat (WDR) proteins are pleiotropic molecular hubs. We identify a WDR gene that is a conserved genomic neighbor of a chitin synthase gene in Ascomycetes. The WDR gene is unique to fungi and plants, and was called Fungal Plant WD (FPWD). FPWD is within a cell wall metabolism gene cluster in the Ascomycetes (Pezizomycotina) comprising chsD, a Chs activator and a GH17 glucanase. The FPWD, AN1556.2 locus was deleted in Aspergillus nidulans strain SAA.111 by gene replacement and only heterokaryon transformants were obtained. The re-annotation of Aspergilli genomes shows that AN1556.2 consists of two tightly linked separate genes, i.e., the WDR gene and a putative beta-flanking gene of unknown function. The WDR and the beta-flanking genes are conserved genomic neighbors localized within a recently identified metabolic cell wall gene cluster in genomes of Aspergilli. The heterokaryons displayed increased susceptibility to drugs affecting the cell wall, and their phenotypes, observed by optical, confocal, scanning electron and atomic force microscopy, suggest cell wall alterations. Quantitative real-time PCR shows altered expression of some cell wall-related genes. The possible implications on cell wall biosynthesis are discussed.
  •  
12.
  • Guerriero, Gea, et al. (författare)
  • Analysis of cellulose synthase genes from domesticated apple identifies collinear genes WDR53 and CesA8A : Partial co-expression, bicistronic mRNA, and alternative splicing of CESA8A
  • 2012
  • Ingår i: Journal of Experimental Botany. - : Oxford University Press. - 0022-0957 .- 1460-2431. ; 63:16, s. 6045-6056
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose synthase (CesA) genes constitute a complex multigene family with six major phylogenetic clades in angiosperms. The recently sequenced genome of domestic apple, Malus-domestica was mined for CesA genes, by blasting full-length cellulose synthase protein (CESA) sequences annotated in the apple genome against protein databases from the plant models Arabidopsis thaliana and Populus trichocarpa. Thirteen genes belonging to the six angiosperm CesA clades and coding for proteins with conserved residues typical of processive glycosyltransferases from family 2 were detected. Based on their phylogenetic relationship to Arabidopsis CESAs, as well as expression patterns, a nomenclature is proposed to facilitate further studies. Examination of their genomic organization revealed that MdCesA8-A is closely linked and co-oriented with WDR53, a gene coding for a WD40 repeat protein. The WDR53 and CesA8 genes display conserved collinearity in dicots and are partially co-expressed in the apple xylem. Interestingly, the presence of a bicistronic WDR53-CesA8A transcript was detected in phytoplasma-infected phloem tissues of apple. The bicistronic transcript contains a spliced intergenic sequence that is predicted to fold into hairpin structures typical of internal ribosome entry sites, suggesting its potential cap-independent translation. Surprisingly, the CesA8A cistron is alternatively spliced and lacks the zinc-binding domain. The possible roles of WDR53 and the alternatively spliced CESA8 variant during cellulose biosynthesis in M.-xdomestica are discussed.
  •  
13.
  • Guerriero, Gea, et al. (författare)
  • The RY/Sph element mediates transcriptional repression of maturation genes from late maturation to early seedling growth
  • 2009
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 184:3, s. 552-565
  • Tidskriftsartikel (refereegranskat)abstract
    • P>In orthodox seeds, the transcriptional activator ABI3 regulates two major stages in embryo maturation: a mid-maturation (MAT) stage leading to accumulation of storage compounds, and a late maturation (LEA) stage leading to quiescence and desiccation tolerance. Our aim was to elucidate mechanisms for transcriptional shutdown of MAT genes during late maturation, to better understand phase transition between MAT and LEA stages. Using transgenic and transient approaches in Nicotiana, we examined activities of two ABI3-dependent reporter genes driven by multimeric RY and abscisic acid response elements (ABREs) from a Brassica napus napin gene, termed RY and ABRE, where the RY reporter requires ABI3 DNA binding. Expression of RY peaks during mid-maturation and drops during late maturation, mimicking the MAT gene program, and in Arabidopsis thaliana RY elements are over-represented in MAT, but not in LEA, genes. The ABI3 transactivation of RY is inhibited by staurosporine, by a PP2C phosphatase, and by a repressor of maturation genes, VAL1/HSI2. The RY element mediates repression of MAT genes, and we propose that transcriptional shutdown of the MAT program during late maturation involves inhibition of ABI3 DNA binding by dephosphorylation. Later, during seedling growth, VAL1/HSI2 family repressors silence MAT genes by binding RY elements. New Phytologist (2009)doi: 10.1111/j.1469-8137.2009.02977.x.
  •  
14.
  • Guerriero, Gea, et al. (författare)
  • WD4O-Repeat Proteins in Plant Cell Wall Formation : Current Evidence and Research Prospects
  • 2015
  • Ingår i: Frontiers in Plant Science. - : FRONTIERS MEDIA. - 1664-462X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • The metabolic complexity of living organisms relies on supramolecular protein structures which ensure vital processes, such as signal transduction, transcription, translation and cell wall synthesis. In eukaryotes WD40-repeat (WDR) proteins often function as molecular "hubs" mediating supramolecular interactions. WDR proteins may display a variety of interacting partners and participate in the assembly of complexes involved in distinct cellular functions. In plants, the formation of lignocellulosic biomass involves extensive synthesis of cell wall polysaccharides, a process that requires the assembly of large transmembrane enzyme complexes, intensive vesicle trafficking, interactions with the cytoskeleton, and coordinated gene expression. Because of their function as supramolecular hubs, WDR proteins could participate in each or any of these steps, although to date only few WDR proteins have been linked to the cell wall by experimental evidence. Nevertheless, several potential cell wall-related WDR proteins were recently identified using in silico approaches, such as analyses of co-expression, interactome and conserved gene neighborhood. Notably, some WDR genes are frequently genomic neighbors of genes coding for GT2-family polysaccharide synthases in eukaryotes, and this WDR-GT2 collinear microsynteny is detected in diverse taxa. In angiosperms, two WDR genes are collinear to cellulose synthase genes, CesAs, whereas in ascomycetous fungi several WDR genes are adjacent to chitin synthase genes, chs. In this Perspective we summarize and discuss experimental and in silico studies on the possible involvement of WDR proteins in plant cell wall formation. The prospects of biotechnological engineering for enhanced biomass production are discussed.
  •  
15.
  • Hrmova, Maria, et al. (författare)
  • Substrate specificity and catalytic mechanism of a xyloglucan xyloglucosyl transferase HvXET6 from barley (Hordeum vulgare L.)
  • 2009
  • Ingår i: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 276:2, s. 437-456
  • Tidskriftsartikel (refereegranskat)abstract
    • A family 16 glycoside hydrolase, xyloglucan xyloglucosyl transferase (EC 2.4.1.207), also known as xyloglucan endotransglycosylase (XET), and designated isoenzyme HvXET6, was purified approximately 400-fold from extracts of young barley seedlings. The complete amino acid sequence of HvXET6 was deduced from the nucleotide sequence of a near full-length cDNA, in combination with tryptic peptide mapping. An additional five to six isoforms or post-translationally modified XET enzymes were detected in crude seedling extracts of barley. The HvXET6 isoenzyme was expressed in Pichia pastoris, characterized and compared with the previously purified native HvXET5 isoform. Barley HvXET6 has a similar apparent molecular mass of 33-35 kDa to the previously purified HvXET5 isoenzyme, but the two isoenzymes differ in their isoelectric points, pH optima, kinetic properties and substrate specificities. The HvXET6 isoenzyme catalyses transfer reactions between xyloglucans and soluble cellulosic substrates, using oligo-xyloglucosides as acceptors, but at rates that are significantly different from those observed for HvXET5. No hydrolytic activity could be detected with either isoenzyme. Comparisons of the reaction rates using xyloglucan or hydroxyethyl cellulose as donors and a series of cellodextrins as acceptors indicated that the acceptor site of HvXET can accommodate five glucosyl residues. Molecular modelling supported this conclusion and further confirmed the ability of the enzyme's active site to accommodate xyloglucan and cellulosic substrates. The two HvXETs followed a ping-pong (Bi, Bi) rather than a sequential reaction mechanism.
  •  
16.
  • Jarmander, Johan, 1983- (författare)
  • Improved detection and performance of surface expression from the AIDA-I autotransporter
  • 2013
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Surface expression of recombinant proteins has attracted a lot of attention due to its potential in applications such as enzyme production, vaccine delivery and bioremediation. Autotransporters have been used for surface expression of a variety of proteins, but the expression systems reported in literature have typically been inflexible and incapable of detecting proteolysis, thereby limiting surface expression yield.In this thesis, a modular surface expression system, utilizing dual tag detection, was therefore created. It was based on the adhesin involved in diffuse adherence (AIDA-I) autotransporter, and was here used to express the model proteins SefA and H:gm on the cell surface of Escherichia coli. Due to the dual tag detection system, proteolysed H:gm could be successfully verified on the cell surface. By optimizing cultivation conditions, surface expression yield of SefA was increased by 300 %, and proteolysis reduced by 33 %. While proteolysis could not be eliminated completely, the work presented in this thesis is a major step towards a general system for surface expression of a wide range of proteins in varied applications.
  •  
17.
  •  
18.
  •  
19.
  • Kaewthai, Nomchit, et al. (författare)
  • Group III-A XTH Genes of Arabidopsis Encode Predominant Xyloglucan Endohydrolases That Are Dispensable for Normal Growth
  • 2013
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 161:1, s. 440-454
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular basis of primary wall extension endures as one of the central enigmas in plant cell morphogenesis. Classical cell wall models suggest that xyloglucan endo-transglycosylase activity is the primary catalyst (together with expansins) of controlled cell wall loosening through the transient cleavage and religation of xyloglucan-cellulose cross links. The genome of Arabidopsis (Arabidopsis thaliana) contains 33 phylogenetically diverse XYLOGLUCAN ENDO-TRANSGLYCOSYLASE/HYDROLASE (XTH) gene products, two of which were predicted to be predominant xyloglucan endohydrolases due to clustering into group III-A. Enzyme kinetic analysis of recombinant AtXTH31 confirmed this prediction and indicated that this enzyme had similar catalytic properties to the nasturtium (Tropaeolum majus) xyloglucanase1 responsible for storage xyloglucan hydrolysis during germination. Global analysis of Genevestigator data indicated that AtXTH31 and the paralogous AtXTH32 were abundantly expressed in expanding tissues. Microscopy analysis, utilizing the resorufin beta-glycoside of the xyloglucan oligosaccharide XXXG as an in situ probe, indicated significant xyloglucan endohydrolase activity in specific regions of both roots and hypocotyls, in good correlation with transcriptomic data. Moreover, this hydrolytic activity was essentially completely eliminated in AtXTH31/AtXTH32 double knockout lines. However, single and double knockout lines, as well as individual overexpressing lines, of AtXTH31 and AtXTH32 did not demonstrate significant growth or developmental phenotypes. These results suggest that although xyloglucan polysaccharide hydrolysis occurs in parallel with primary wall expansion, morphological effects are subtle or may be compensated by other mechanisms. We hypothesize that there is likely to be an interplay between these xyloglucan endohydrolases and recently discovered apoplastic exo-glycosidases in the hydrolytic modification of matrix xyloglucans.
  •  
20.
  • Kaewthai, Nomchit, et al. (författare)
  • Heterologous expression of diverse barley XTH genes in the yeast Pichia pastoris
  • 2010
  • Ingår i: PLANT BIOTECHNOLOGY. - : Japanese Society for Plant Cell and Molecular Biology. - 1342-4580 .- 1347-6114. ; 27:3, s. 251-258
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterologous expression of plant genes, particularly those encoding carbohydrate-active enzymes such as glycoside hydrolases and glycosyl transferases, continues to be a major hurdle in the functional analysis of plant proteomes. Presently, there are few convenient systems for the production of recombinant plant enzymes in active form and at adequate levels for biochemical and structural characterization. The methylotrophic yeast Pichia pastoris is an attractive expression host due to its ease of manipulation and its capacity to perform post-translational protein modifications, such as N-glycosylation [Daly and Hearn (2005) J Mol Recognit 18: 119-138]. Here, we demonstrate the utility of the P. pastoris SMD1168H/pPICZ-alpha C system for the expression of a range of xyloglucan endo-transglycosylase/hydrolase (XTH) cDNAs from barley (Hordeum vulgare). Although stable transformants were readily obtained by positive selection for vector-induced antibiotic resistance for all of the nine constructs tested, only five isoforms were secreted as soluble proteins into the culture medium, four in active form. Furthermore, production levels of these five isoforms were found to be variable, depending on the transformant, which further underscores the necessity of screening multiple clones for expression of active enzyme. Failure to express certain XTH isoforms in P. pastoris could not be correlated with any conserved gene or protein sequence properties, and this precluded using rational sequence engineering to enhance heterologous expression of the cDNAs. Thus, while significant advances are reported here, systems for the heterologous production of plant proteins require further development.
  •  
21.
  • Kim, H. U., et al. (författare)
  • New pollen-specific receptor kinases identified in tomato, maize and Arabidopsis : the tomato kinases show overlapping but distinct localization patterns on pollen tubes
  • 2002
  • Ingår i: Plant Molecular Biology. - 0167-4412 .- 1573-5028. ; 50:1, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • We previously characterized LePRK1 and LePRK2, pollen-specific receptor kinases from tomato (Muschietti et al., 1998). Here we identify a similar receptor kinase from maize, ZmPRK1, that is also specifically expressed late in pollen development, and a third pollen receptor kinase from tomato, LePRK3. LePRK3 is less similar to LePRK1 and LePRK2 than either is to each other. We used immunolocalization to show that all three LePRKs localize to the pollen tube wall, in partially overlapping but distinct patterns. We used RT-PCR and degenerate primers to clone homologues of the tomato kinases from other Solanaceae. We deduced features diagnostic of pollen receptor kinases and used these criteria to identify family members in the Arabidopsis database. RT-PCR confirmed pollen expression for five of these Arabidopsis candidates; two of these are clearly homologues of LePRK3. Our results reveal the existence of a distinct pollen-specific receptor kinase gene family whose members are likely to be involved in perceiving extracellular cues during pollen tube growth.
  •  
22.
  •  
23.
  •  
24.
  • Martin, Nathalie, 1972- (författare)
  • Studies on the regulation of the Napin napA promoter by ABI3, bZIP and bHLH transcription factors
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The B3-domain transcription factor ABI3 is a major regulator of gene expression of seed maturation during Arabidopsis embryogenesis. The napA gene encodes for a Brassica napus 2S storage protein specifically expressed in the embryo during the early and mid-maturation phase (MAT program).The napA promoter contains two essential cis-sequences; the B-box, which functions as an Abscisic acid-responsive element (ABRE) and the RY/G cluster. ABI3 is known to target both these cis-sequences. Several bZIP factors expressed during seed maturation, bZIP12, bZIP38 and bZIP66, as well as a heterodimer of ABI5 and bZIP67, can bind the B-box ABRE in a yeast one-hybrid assay. Amongst them ABI3 and bZIP67 are able to activate synergistically the two cis-elements in a transient protoplast assay. We also show that bZIP67 interacts directly with ABI3 in a yeast two-hybrid assay. Therefore, we hypothesize that i)ABI3 is recruited indirectly to napA through molecular interaction with bZIP67 bound to the B-box ABRE, ii) ABI3 binds directly to the RY-element and interacts with bZIP67 targeted to the adjacent G-box found in the napA RY/G-cluster.We also show that the RY/G cluster is responsible for repression of napA expression during the late maturation LEA program, and for repression of ABI3-mediated transactivation during germination. ABI3 from which the A1 activation domain had been removed, can bind to the napA RY-element in a yeast one-hybrid assay, in contrast to full-length ABI3, suggesting that ABI3 DNA-binding abilities are regulated by auto-inhibition. We propose that during late maturation ABI3 loses ability to bind RY, which results in repression of MAT genes but not of LEA genes that contain fewer RY-elements. In parallel, we show that the B3-domain VAL proteins bind to RY-elements and decrease ABI3-mediated transactivation of the napA RY/G and therefore act as active repressors maintaining silencing of MAT genes during vegetative growth.
  •  
25.
  • Mohan Pawar, Prashant, et al. (författare)
  • Downregulation of RWA genes in hybrid aspen affects xylan acetylation and wood saccharification
  • 2017
  • Ingår i: New Phytologist. - : Wiley-Blackwell Publishing Inc.. - 0028-646X .- 1469-8137. ; 214:4, s. 1491-1505
  • Tidskriftsartikel (refereegranskat)abstract
    • High acetylation of angiosperm wood hinders its conversion to sugars by glycoside hydrolases, subsequent ethanol fermentation and (hence) its use for biofuel production. We studied the REDUCED WALL ACETYLATION (RWA) gene family of the hardwood model Populus to evaluate its potential for improving saccharification. The family has two clades, AB and CD, containing two genes each. All four genes are expressed in developing wood but only RWA-A and -B are activated by master switches of the secondary cell wall PtNST1 and PtMYB21. Histochemical analysis of promoter:: GUS lines in hybrid aspen (Populus tremula x tremuloides) showed activation of RWA-A and -B promoters in the secondary wall formation zone, while RWA-C and -D promoter activity was diffuse. Ectopic downregulation of either clade reduced wood xylan and xyloglucan acetylation. Suppressing both clades simultaneously using the wood-specific promoter reduced wood acetylation by 25% and decreased acetylation at position 2 of Xylp in the dimethyl sulfoxide-extracted xylan. This did not affect plant growth but decreased xylose and increased glucose contents in the noncellulosic monosaccharide fraction, and increased glucose and xylose yields of wood enzymatic hydrolysis without pretreatment. Both RWA clades regulate wood xylan acetylation in aspen and are promising targets to improve wood saccharification.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 43
Typ av publikation
tidskriftsartikel (27)
annan publikation (11)
doktorsavhandling (3)
licentiatavhandling (2)
Typ av innehåll
refereegranskat (27)
övrigt vetenskapligt/konstnärligt (16)
Författare/redaktör
Ezcurra, Ines (38)
Teeri, Tuula T. (9)
Aspeborg, Henrik (7)
Guerriero, Gea (7)
Winzell, Anders (7)
Rask, Lars (6)
visa fler...
Wang, Yang (5)
Mellerowicz, Ewa (5)
Divne, Christina (5)
Ratke, Christine (5)
Kaewthai, Nomchit (5)
Brumer, Harry (4)
Martin, Nathalie (4)
Rask, L. (3)
Sundström, Jens (3)
Arvestad, Lars (3)
Bulone, Vincent (3)
Azhar, Shoaib (3)
McCormick, S (3)
Wang, Yucheng (3)
Derba-Maceluch, Mart ... (3)
Gandini, Rosaria (3)
Valsecchi, Isabel (3)
Wernersson, Jonny (3)
Tang, W. H. (3)
Cotter, R (2)
Berthold, Fredrik (2)
Bhalerao, Rishikesh ... (2)
Gorzsás, András (2)
Aspeborg, Henrik, 19 ... (2)
Kallas, Åsa (2)
Eklöf, Jens M. (2)
Djerbi, Soraya (2)
Fincher, Geoffrey B. (2)
Adriasola, Mathilda (2)
Gendre, Delphine (2)
Bouzenzana, Jamel (2)
Mohan Pawar, Prashan ... (2)
Awano, Tatsuya (2)
Lesniewska, Joanna (2)
Ibatullin, Farid M. (2)
Ellerstrom, M (2)
Wycliffe, P (2)
Fugelstad, Johanna (2)
Golovko, Anna (2)
Hausman, Jean-Franco ... (2)
Hrmova, Maria (2)
Harvey, Andrew J. (2)
Balasubramanian, Vim ... (2)
Naumann, Marcel (2)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (38)
Sveriges Lantbruksuniversitet (8)
Uppsala universitet (5)
Umeå universitet (3)
Göteborgs universitet (1)
Karolinska Institutet (1)
Språk
Engelska (40)
Odefinierat språk (2)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (19)
Lantbruksvetenskap (10)
Teknik (5)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy