SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Feiden Gregory) "

Search: WFRF:(Feiden Gregory)

  • Result 1-21 of 21
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mann, Andrew W., et al. (author)
  • Zodiacal Exoplanets In Time (Zeit). III. A Short-Period Planet Orbiting A Pre-Main-Sequence Star In The Upper Scorpius Ob Association
  • 2016
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 152:3
  • Journal article (peer-reviewed)abstract
    • We confirm and characterize a close-in (P-orb = 5.425 days), super-Neptune sized (5.04(-0.37)(+0.34) R-circle plus) planet transiting K2-33 (2MASS J16101473-1919095), a late-type (M3) pre-main-sequence (11 Myr old) star in the Upper Scorpius subgroup of the Scorpius-Centaurus OB association. The host star has the kinematics of a member of the Upper Scorpius OB association, and its spectrum contains lithium absorption, an unambiguous sign of youth (<20 Myr) in late-type dwarfs. We combine photometry from K2 and the ground-based MEarth project to refine the planet's properties and constrain the host star's density. We determine K2-33's bolometric flux and effective temperature from moderate-resolution spectra. By utilizing isochrones that include the effects of magnetic fields, we derive a precise radius (6%-7%) and mass (16%) for the host star, and a stellar age consistent with the established value for Upper Scorpius. Follow-up high-resolution imaging and Doppler spectroscopy confirm that the transiting object is not a stellar companion or a background eclipsing binary blended with the target. The shape of the transit, the constancy of the transit depth and periodicity over 1.5 yr, and the independence with wavelength rule out stellar variability or a dust cloud or debris disk partially occulting the star as the source of the signal; we conclude that it must instead be planetary in origin. The existence of K2-33b suggests that close-in planets can form in situ or migrate within similar to 10 Myr, e.g., via interactions with a disk, and that long-timescale dynamical migration such as by Lidov-Kozai or planet-planet scattering is not responsible for all short-period planets.
  •  
2.
  • Boyajian, T., et al. (author)
  • Stellar diameters and temperatures - VI. High angular resolution measurements of the transiting exoplanet host stars HD 189733 and HD 209458 and implications for models of cool dwarfs
  • 2015
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 447:1, s. 846-857
  • Journal article (peer-reviewed)abstract
    • We present direct radii measurements of the well-known transiting exoplanet host stars HD 189733 and HD 209458 using the CHARA Array interferometer. We find the limb-darkened angular diameters to be thetaLD = 0.3848 +/- 0.0055 and 0.2254 +/- 0.0072 milliarcsec for HD 189733 and HD 209458, respectively. HD 189733 and HD 209458 are currently the only two transiting exoplanet systems where detection of the respective planetary companion's orbital motion from high resolution spectroscopy has revealed absolute masses for both star and planet. We use our new measurements together with the orbital information from radial velocity and photometric time series data, Hipparcos distances, and newly measured bolometric fluxes to determine the stellar effective temperatures (Teff = 4875 +/- 43, 6093 +/- 103 K), stellar linear radii (R* = 0.805 +/- 0.016, 1.203 +/- 0.061 Rsun), mean stellar densities (rho* = 1.62 +/- 0.11, 0.58 +/- 0.14 rhosun), planetary radii (Rp = 1.216 +/- 0.024, 1.451 +/- 0.074 RJup), and mean planetary densities (rhop = 0.605 +/- 0.029, 0.196 +/- 0.033 rhoJup) for HD 189733 b and HD 209458 b, respectively. The stellar parameters for HD 209458, a F9 dwarf, are consistent with indirect estimates derived from spectroscopic and evolutionary modeling. However, we find that models are unable to reproduce the observational results for the K2 dwarf, HD 189733. We show that, for stellar evolutionary models to match the observed stellar properties of HD 189733, adjustments lowering the solar-calibrated mixing length parameter from 1.83 to 1.34 need to be employed.
  •  
3.
  • Brogaard, K., et al. (author)
  • The blue straggler V106 in NGC 6791 : a prototype progenitor of old single giants masquerading as young
  • 2018
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 481:4, s. 5062-5072
  • Journal article (peer-reviewed)abstract
    • We determine the properties of the binary star V106 in the old open cluster NGC 6791. We identify the system to be a blue straggler cluster member by using a combination of ground-based and Kepler photometry and multi-epoch spectroscopy. The properties of the primary component are found to be M-p similar to 1.67 M-circle dot, more massive than the cluster turn-off, with R-p similar to 1.91 R-circle dot and T-eff = 7110 +/- 100 K. The secondary component is highly oversized and overluminous for its low mass with M-s similar to 0.182 M-circle dot, R-s similar to 0.864 R-circle dot, and T-eff = 6875 +/- 200 K. We identify this secondary star as a bloated (proto) extremely low-mass helium white dwarf. These properties of V106 suggest that it represents a typical Algol-paradox system and that it evolved through a mass-transfer phase, which provides insight into its past evolution. We present a detailed binary stellar evolution model for the formation of V106 using the MESA code and find that the mass-transfer phase only ceased about 40 Myr ago. Due to the short orbital period (P = 1.4463 d), another mass-transfer phase is unavoidable once the current primary star evolves towards the red giant phase. We argue that V106 will evolve through a common-envelope phase within the next 100 Myr and merge to become a single overmassive giant. The high mass will make it appear young for its true age, which is revealed by the cluster properties. Therefore, V106 is potentially a prototype progenitor of old field giants masquerading as young.
  •  
4.
  • Chaboyer, B., et al. (author)
  • Testing Metal-poor Stellar Models and Isochrones with HST Parallaxes of Metal-poor Stars
  • 2017
  • In: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 835:2
  • Journal article (peer-reviewed)abstract
    • Hubble Space Telescope (HST) fine guidance sensor observations were used to obtain parallaxes of eight metal-poor ([Fe/H] < -1.4) stars. The parallaxes of these stars determined by the new Hipparcos reduction average 17% accuracy, in contrast to our new HST parallaxes, which average 1% accuracy and have errors on the individual parallaxes ranging from 85 to 144 mu as. These parallax data were combined with HST Advanced Camera for Surveys photometry in the F606W and F814W filters to obtain the absolute magnitudes of the stars with an accuracy of 0.02-0.03 mag. Six of these stars are on the main sequence (MS) (with -2.7 < [Fe/H] < -1.8) and are suitable for testing metal-poor stellar evolution models and determining the distances to metal-poor globular clusters (GCs). Using the abundances obtained by O'Malley et al., we find that standard stellar models using the VandenBerg & Clem color transformation do a reasonable job of matching five of the MS stars, with HD 54639 ([Fe/H] = -2.5) being anomalous in its location in the color-magnitude diagram. Stellar models and isochrones were generated using a Monte Carlo analysis to take into account uncertainties in the models. Isochrones that fit the parallax stars were used to determine the distances and ages of nine GCs (with -2.4 <= [Fe/H] <= -1.9). Averaging together the age of all nine clusters led to an absolute age of the oldest, most metal-poor GCs of 12.7 +/- 1.0 Gyr, where the quoted uncertainty takes into account the known uncertainties in the stellar models and isochrones, along with the uncertainty in the distance and reddening of the clusters.
  •  
5.
  • Feiden, Gregory A. (author)
  • Magnetic inhibition of convection and the fundamental properties of low-mass stars III. A consistent 10 Myr age for the Upper Scorpius OB association
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 593
  • Journal article (peer-reviewed)abstract
    • When determining absolute ages of identifiably young stellar populations, results strongly depend on which stars are studied. Cooler (K, M) stars typically yield ages that are systematically younger than warmer (A, F, G) stars by a factor of two. I explore the possibility that these age discrepancies are the result of magnetic inhibition of convection in cool young stars by using magnetic stellar evolution isochrones to determine the median age of the Upper Scorpius subgroup of the Scorpius-Centaurus OB association. A median age of 10 Myr consistent across spectral types A through M is found, except for a subset of F-type stars that appear significantly older. Agreement is shown for ages derived from the Hertzsprung-Russell (HR) diagram and from the empirical mass-radius relationship defined by eclipsing multiple-star systems. Surface magnetic field strengths required to produce agreement are approximately 2.5 kG and are predicted from a priori estimates of thermal equipartition values. A region in the HR diagram is identified that plausibly connects stars whose structures are weakly influenced by the presence of magnetic fields with those whose structures are strongly influenced by magnetic fields. The models suggest that this region is characterized by stars with rapidly thinning outer convective envelopes where the radiative core mass is greater than 75% of the total stellar mass. Furthermore, depletion of lithium predicted from magnetic models appears in better agreement with observed lithium equivalent widths than predictions from non-magnetic models. These results suggest that magnetic inhibition of convection plays an important role in the early evolution of low-mass stars and that it may be responsible for noted age discrepancies in young stellar populations.
  •  
6.
  •  
7.
  • Feiden, Gregory, 1986-, et al. (author)
  • Do Magnetic Fields Actually Inflate Low-Mass Stars?
  • 2013
  • In: International Astronomical Union Symposium 302.
  • Conference paper (other academic/artistic)abstract
    • Magnetic fields have been hypothesized to inflate the radii of low-mass stars---defined as less than 0.8 solar masses---in detached eclipsing binaries (DEBs). We evaluate this hypothesis using the magnetic Dartmouth stellar evolution code. Results suggest that magnetic suppression of thermal convection can inflate low-mass stars that possess a radiative core and convective outer envelope. A scaling relation between X-ray luminosity and surface magnetic flux indicates that model surface magnetic field strength predictions are consistent with observations. This supports the notion that magnetic fields may be inflating these stars. However, magnetic models are unable to reproduce radii of fully convective stars in DEBs. Instead, we propose that model discrepancies below the fully convective boundary are related to metallicity.
  •  
8.
  • Feiden, Gregory, 1986- (author)
  • Eclipsing binary systems as tests of low-mass stellar evolution theory
  • 2015
  • In: Living Together. - 9781583818770 - 9781583818763 ; , s. 137-152
  • Conference paper (other academic/artistic)abstract
    • Stellar fundamental properties (masses, radii, effective temperatures) can be extracted from observations of eclipsing binary systems with remarkable precision, often better than 2%. Such precise measurements afford us the opportunity to confront the validity of basic predictions of stellar evolution theory, such as the mass-radius relationship. A brief historical overview of confrontations between stellar models and data from eclipsing binaries is given, highlighting key results and physical insight that have led directly to our present understanding. The current paradigm that standard stellar evolution theory is insufficient to describe the most basic relation, that of a star's mass to its radius, along the main sequence is then described. Departures of theoretical expectations from empirical data, however, provide a rich opportunity to explore various physical solutions, improving our understanding of important stellar astrophysical processes.
  •  
9.
  • Feiden, Gregory, 1986-, et al. (author)
  • Magnetic Field Induced Radius Inflation of Low-Mass Stars
  • 2013
  • In: Binary 2013: Setting a new standard in the analysis of binary stars.. - : EDP Sciences.
  • Conference paper (other academic/artistic)abstract
    • We present results obtained using the magnetic Dartmouth stellar evolution code that address the possibility that magnetic fields are inflating low-mass stars in detached eclipsing binaries. While it seems plausible that magnetic fields are inflating stars with radiative cores, the level of inflation observed among fully convective stars appears too large to be explained by magnetic fields. We provide an alternative explanation, stellar metallicity, and propose observations that can help further constrain stellar models.
  •  
10.
  • Feiden, Gregory, 1986-, et al. (author)
  • Magnetic Inhibition of Convection and the Fundamental Properties of Low-Mass Stars. : II. Fully Convective Main-Sequence Stars
  • 2014
  • In: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 789:1, s. 53-
  • Journal article (peer-reviewed)abstract
    • We examine the hypothesis that magnetic fields are inflating the radii of fully convective main-sequence stars in detached eclipsing binaries (DEBs). The magnetic Dartmouth stellar evolution code is used to analyze two systems in particular: Kepler-16 and CM Draconis. Magneto-convection is treated assuming stabilization of convection and also by assuming reductions in convective efficiency due to a turbulent dynamo. We find that magnetic stellar models are unable to reproduce the properties of inflated fully convective main-sequence stars, unless strong interior magnetic fields in excess of 10 MG are present. Validation of the magnetic field hypothesis given the current generation of magnetic stellar evolution models therefore depends critically on whether the generation and maintenance of strong interior magnetic fields is physically possible. An examination of this requirement is provided. Additionally, an analysis of previous studies invoking the influence of star spots is presented to assess the suggestion that star spots are inflating stars and biasing light curve analyses toward larger radii. From our analysis, we find that there is not yet sufficient evidence to definitively support the hypothesis that magnetic fields are responsible for the observed inflation among fully convective main-sequence stars in DEBs.
  •  
11.
  • Feiden, Gregory, 1986-, et al. (author)
  • Magnetic Inhibition of Convection and the Fundamental Properties of Low-Mass Stars. I. Stars with a Radiative Core
  • 2013
  • In: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 779:2, s. 183-
  • Journal article (peer-reviewed)abstract
    • Magnetic fields are hypothesized to inflate the radii of low-mass stars---defined as less massive than 0.8M⊙---in detached eclipsing binaries (DEBs). We investigate this hypothesis using the recently introduced magnetic Dartmouth stellar evolution code. In particular, we focus on stars thought to have a radiative core and convective outer envelope by studying in detail three individual DEBs: UV Psc, YY Gem, and CU Cnc. The results suggest that the stabilization of thermal convection by a magnetic field is a plausible explanation for the observed model-radius discrepancies. However, surface magnetic field strengths required by the models are significantly stronger than those estimated from the observed coronal X-ray emission. Agreement between model predicted surface magnetic field strengths and those inferred from X-ray observations can be found by assuming that the magnetic field sources its energy from convection. This approach makes the transport of heat by convection less efficient and is akin to reduced convective mixing length methods used in other studies. Predictions for the metallicity and magnetic field strengths of the aforementioned systems are reported. We also develop an expression relating a reduction in the convective mixing length to a magnetic field strength in units of the equipartition value. Our results are compared with those from previous investigations to incorporate magnetic fields to explain the low-mass DEB radius inflation. Finally, we explore how the effects of magnetic fields might affect mass determinations using asteroseismic data and the implication of magnetic fields on exoplanet studies.
  •  
12.
  • Feiden, Gregory, 1986-, et al. (author)
  • Revised age for CM Draconis and WD 1633+572 : Toward a resolution of model-observation radius discrepancies
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 571, s. A70-
  • Journal article (peer-reviewed)abstract
    • We report an age revision for the low-mass detached eclipsing binary CM Draconis and its common proper motion companion, WD 1633+572. An age of 8.5 ± 3.5 Gyr is found by combining an age estimate for the lifetime of WD 1633+572 and an estimate from galactic space motions. The revised age is greater than a factor of two older than previous estimates. Our results provide consistency between the white dwarf age and the system's galactic kinematics, which reveal the system is a highly probable member of the galactic thick disk. We find the probability that CM Draconis and WD 1633+572 are members of the thick disk is 8500 times greater than the probability that they are members of the thin disk and 170 times greater than the probability they are halo interlopers. If CM Draconis is a member of the thick disk, it is likely enriched in α-elements compared to iron by at least 0.2 dex relative to the Sun. This leads to the possibility that previous studies under-estimate the [Fe/H] value, suggesting the system has a near-solar [Fe/H]. Implications for the long-standing discrepancies between the radii of CM Draconis and predictions from stellar evolution theory are discussed. We conclude that CM Draconis is only inflated by about 2% compared to stellar evolution predictions.
  •  
13.
  • Feiden, Gregory, 1986- (author)
  • Stellar Evolution Models of Young Stars : Progress and Limitations
  • 2015
  • In: Young Stars &amp; Planets Near The Sun. - 9781107138162 ; , s. 79-84
  • Conference paper (peer-reviewed)abstract
    • Stellar evolution models are a cornerstone of young star astrophysics, which necessitates that they yield accurate and reliable predictions of stellar properties. Here, I review the current performance of stellar evolution models against young astrophysical benchmarks and highlight recent progress incorporating non-standard physics, such as magnetic field and starspots, to explain observed deficiencies. While addition of these physical processes leads to improved agreement between models and observations, there are several fundamental limitations in our understanding about how these physical processes operate. These limitations inhibit our ability to form a coherent picture of the essential physics needed to accurately compute young stellar models, but provide rich avenues for further exploration.
  •  
14.
  • Gaidos, E., et al. (author)
  • Zodiacal exoplanets in time (ZEIT) - II. A 'super-Earth' orbiting a young K dwarf in the Pleiades Neighbourhood
  • 2017
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 464:1, s. 850-862
  • Journal article (peer-reviewed)abstract
    • We describe a 'super-Earth'-size (2.30 +/- 0.16 R-circle plus)planet transiting an early K-type dwarf star in the Campaign 4 field observed by the K2 mission. The host star, EPIC 210363145, was identified as a candidate member of the approximately 120 Myr-old Pleiades cluster based on its kinematics and photometric distance. It is rotationally variable and exhibits near-ultraviolet emission consistent with a Pleiades age, but its rotational period is approximate to 20 d and its spectrum contains no H alpha emission nor the Li I absorption expected of Pleiades K dwarfs. Instead, the star is probably an interloper that is unaffiliated with the cluster, but younger (less than or similar to 1.3 Gyr) than the typical field dwarf. We ruled out a false positive transit signal produced by confusion with a background eclipsing binary by adaptive optics imaging and a statistical calculation. Doppler radial velocity measurements limit the companion mass to <2 times that of Jupiter. Screening of the light curves of 1014 potential Pleiades candidate stars uncovered no additional planets. An injection-and-recovery experiment using the K2 Pleiades light curves with simulated planets, assuming a planet population like that in the Kepler prime field, predicts only 0.8-1.8 detections (versus similar to 20 in an equivalent Kepler sample). The absence of Pleiades planet detections can be attributed to the much shorter monitoring time of K2 (80 d versus 4 yr), increased measurement noise due to spacecraft motion, and the intrinsic noisiness of the stars.
  •  
15.
  • Malo, L., et al. (author)
  • BANYAN. IV. Fundamental parameters of low-mass star candidates in nearby young stellar kinematic groups - Isochronal Age determination using Magnetic evolutionary models
  • 2014
  • In: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 792:1, s. 37-
  • Journal article (peer-reviewed)abstract
    • Based on high resolution optical spectra obtained with ESPaDOnS at CFHT, we determine fundamental parameters (\Teff, R, \Lbol, \logg\ and metallicity) for 59 candidate members of nearby young kinematic groups. The candidates were identified through the BANYAN Bayesian inference method of \citet{2013malo}, which takes into account the position, proper motion, magnitude, color, radial velocity and parallax (when available) to establish a membership probability. The derived parameters are compared to Dartmouth Magnetic evolutionary models and to field stars with the goal to constrain the age of our candidates. We find that, in general, low-mass stars in our sample are more luminous and have inflated radii compared to older stars, a trend expected for pre-main sequence stars. The Dartmouth Magnetic evolutionary models show a good fit to observations of field K and M stars assuming a magnetic field strength of a few kG, as typically observed for cool stars. Using the low-mass members of βPictoris moving group, we have re-examined the age inconsistency problem between Lithium Depletion age and isochronal age (Hertzspring-Russell diagram). We find that the inclusion of the magnetic field in evolutionary models increase the isochronal age estimates for the K5V-M5V stars. Using these models and field strengths, we derive an average isochronal age between 15 and 28 Myr and we confirm a clear Lithium Depletion Boundary from which an age of 26±3~Myr is derived, consistent with previous age estimates based on this method.
  •  
16.
  • Mann, Andrew, et al. (author)
  • How to Constrain Your M Dwarf : Measuring Effective Temperature, Bolometric Luminosity, Mass, and Radius
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 804
  • Journal article (peer-reviewed)abstract
    • Precise and accurate parameters for late-type (late K and M) dwarf stars are important for characterization of any orbiting planets, but such determinations have been hampered by these stars' complex spectra and dissimilarity to the Sun. We exploit an empirically calibrated method to estimate spectroscopic effective temperature (Teff) and the Stefan--Boltzmann law to determine radii of 183 nearby K7--M7 single stars with a precision of 2%--5%. Our improved stellar parameters enable us to develop model-independent relations between Teff or absolute magnitude and radius, as well as between color and Teff. The derived Teff--radius relation depends strongly on [Fe/H], as predicted by theory. The relation between absolute KS magnitude and radius can predict radii accurate to ~= 3%. We derive bolometric corrections to the V{{R}C}{{I}C}grizJH{{K}S} and Gaia passbands as a function of color, accurate to 1%--3%. We confront the reliability of predictions from Dartmouth stellar evolution models using a Markov chain Monte Carlo to find the values of unobservable model parameters (mass, age) that best reproduce the observed effective temperature and bolometric flux while satisfying constraints on distance and metallicity as Bayesian priors. With the inferred masses we derive a semi-empirical mass--absolute magnitude relation with a scatter of 2% in mass. The best-agreement models overpredict stellar Teff values by an average of 2.2% and underpredict stellar radii by 4.6%, similar to differences with values from low-mass eclipsing binaries. These differences are not correlated with metallicity, mass, or indicators of activity, suggesting issues with the underlying model assumptions, e.g., opacities or convective mixing length.
  •  
17.
  • Muirhead, Philip, et al. (author)
  • Characterizing the Cool KOIs. VI. H- and K-band Spectra of Kepler M Dwarf Planet-candidate Hosts
  • 2014
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 213:1, s. 5-
  • Journal article (peer-reviewed)abstract
    • We present H - and K -band spectra for late-type Kepler Objects of Interest (the "Cool KOIs"): low-mass stars with transiting-planet candidates discovered by NASA’s Kepler Mission that are listed on the NASA Exoplanet Archive. We acquired spectra of 103 Cool KOIs and used the indices and calibrations of Rojas-Ayala et al. to determine their spectral types, stellar effective temperatures, and metallicities, significantly augmenting previously published values. We interpolate our measured effective temperatures and metallicities onto evolutionary isochrones to determine stellar masses, radii, luminosities, and distances, assuming the stars have settled onto the main sequence. As a choice of isochrones, we use a new suite of Dartmouth predictions that reliably include mid-to-late M dwarf stars. We identify five M4V stars: KOI-961 (confirmed as Kepler 42), KOI-2704, KOI-2842, KOI-4290, and the secondary component to visual binary KOI-1725, which we call KOI-1725 B. We also identify a peculiar star, KOI-3497, which has Na and Ca lines consistent with a dwarf star but CO lines consistent with a giant. Visible-wavelength adaptive optics imaging reveals two objects within a 1 arcsec diameter; however, the objects’ colors are peculiar. The spectra and properties presented in this paper serve as a resource for prioritizing follow-up observations and planet validation efforts for the Cool KOIs and are all available for download online using the "data behind the figure" feature.
  •  
18.
  • Muirhead, Philip S., et al. (author)
  • Kepler-445, Kepler-446 and the Occurrence of Compact Multiples Orbiting mid-M Dwarf Stars
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 801:1
  • Journal article (peer-reviewed)abstract
    • We confirm and characterize the exoplanetary systems Kepler-445 and Kepler-446: two mid-M dwarf stars, each with multiple, small, short-period transiting planets. Kepler-445 is a metal-rich ([ Fe/H] = + 0.25 0.10) M4 dwarf with three transiting planets, and Kepler-446 is a metal-poor ([ Fe/H] = -0.30 0.10) M4 dwarf also with three transiting planets. Kepler-445c is similar toGJ 1214b: both in planetary radius and the properties of the host star. The Kepler-446 system is similar to the Kepler-42 system: both are metal-poor with large galactic space velocities and three short-period, likely rocky transiting planets that were initially assigned erroneously large planet-to-star radius ratios. We independently determined stellar parameters from spectroscopy and searched for and fitted the transit light curves for the planets, imposing a strict prior on stellar density in order to remove correlations between the fitted impact parameter and planet-to-star radius ratio for short-duration transits. Combining Kepler-445, Kepler-446, and Kepler-42, and isolating all mid-M dwarf stars observed by Kepler with the precision necessary to detect similar systems, we calculate that 21+ 7 -5 % of mid-M dwarf stars host compact multiples ( multiple planets with periods of less than 10 days) for a wide range of metallicities. We suggest that the inferred planet masses for these systems support highly efficient accretion of protoplanetary disk metals by mid-M dwarf protoplanets.
  •  
19.
  • Stassun, Keivan, et al. (author)
  • Empirical Tests of Pre-Main-Sequence Stellar Evolution Models with Eclipsing Binaries
  • 2014
  • In: New astronomy reviews (Print). - : Elsevier. - 1387-6473 .- 1872-9630. ; 60-61, s. 1-28
  • Journal article (peer-reviewed)abstract
    • We examine the performance of standard PMS stellar evolution models against the accurately measured properties of a benchmark sample of 26 PMS stars in 13 EB systems. We provide a definitive compilation of all fundamental properties for the EBs. We also provide a definitive compilation of the various PMS model sets. In the H-R diagram, the masses inferred for the individual stars by the models are accurate to better than 10% above 1 Msun, but below 1 Msun they are discrepant by 50-100%. We find evidence that the failure of the models to match the data is linked to the triples in the EB sample; at least half of the EBs possess tertiary companions. Excluding the triples, the models reproduce the stellar masses to better than ~10% in the H-R diagram, down to 0.5 Msun, below which the current sample is fully contaminated by tertiaries. We consider several mechanisms by which a tertiary might cause changes in the EB properties and thus corrupt the agreement with stellar model predictions. We show that the energies of the tertiary orbits are comparable to that needed to potentially explain the scatter in the EB properties through injection of heat, perhaps involving tidal interaction. It seems from the evidence at hand that this mechanism, however it operates in detail, has more influence on the surface properties of the stars than on their internal structure, as the lithium abundances are broadly in good agreement with model predictions. The EBs that are members of young clusters appear individually coeval to within 20%, but collectively show an apparent age spread of ~50%, suggesting true age spreads in young clusters. However, this apparent spread in the EB ages may also be the result of scatter in the EB properties induced by tertiaries. 
  •  
20.
  • Torres, Guillermo, et al. (author)
  • The Benchmark Eclipsing Binary V530 Ori : A Critical Test of Magnetic Evolution Models for Low-Mass Stars
  • 2015
  • In: Living Together. - 9781583818770 - 9781583818763 ; , s. 169-173
  • Conference paper (peer-reviewed)abstract
    • We report accurate measurements of the physical properties (mass, radius, temperature) of components of the G+M eclipsing binary V530 On. The M-type secondary shows a larger radius and a cooler temperature than predicted by standard stellar evolution models, as has been found for many other low-mass stars and ascribed to the effects of magnetic activity and/or spots. We show that models from the Dartmouth series that incorporate magnetic fields are able to match the observations with plausible field strengths of 1-2 kG, consistent with a rough estimate we derive for that star.
  •  
21.
  • Torres, Guillermo, et al. (author)
  • The G Plus M Eclipsing Binary V530 Orionis: A Stringent Test of Magnetic Stellar Evolution Models for Low-Mass Stars
  • 2014
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 797:1, s. 31-
  • Journal article (peer-reviewed)abstract
    • We report extensive photometric and spectroscopic observations of the 6.1 day period, G+M-type detached double-lined eclipsing binary V530 Ori, an important new benchmark system for testing stellar evolution models for low-mass stars. We determine accurate masses and radii for the components with errors of 0.7% and 1.3%, as follows: M-A = 1.0038 +/- 0.0066 M-circle dot, M-B = 0.5955 +/- 0.0022 M-circle dot, R-A = 0.980 +/- 0.013 R-circle dot, and R-B = 0.5873 +/- 0.0067 R-circle dot. The effective temperatures are 5890 +/- 100K (G1 v) and 3880 +/- 120K (M1 v), respectively. A detailed chemical analysis probing more than 20 elements in the primary spectrum shows the system to have a slightly subsolar abundance, with [Fe/H] = -0.12 +/- 0.08. A comparison with theory reveals that standard models underpredict the radius and overpredict the temperature of the secondary, as has been found previously for other M dwarfs. On the other hand, models from the Dartmouth series incorporating magnetic fields are able to match the observations of the secondary star at the same age as the primary (similar to 3 Gyr) with a surface field strength of 2.1 +/- 0.4 kG when using a rotational dynamo prescription, or 1.3 +/- 0.4 kG with a turbulent dynamo approach, not far from our empirical estimate for this star of 0.83 +/- 0.65 kG. The observations are most consistent with magnetic fields playing only a small role in changing the global properties of the primary. The V530 Ori system thus provides an important demonstration that recent advances in modeling appear to be on the right track to explain the long-standing problem of radius inflation and temperature suppression in low-mass stars.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-21 of 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view