SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ferre Benedicte) "

Sökning: WFRF:(Ferre Benedicte)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bastard, Paul, et al. (författare)
  • Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1.
  • 2021
  • Ingår i: The Journal of experimental medicine. - 1540-9538. ; 218:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with biallelic loss-of-function variants of AIRE suffer from autoimmune polyendocrine syndrome type-1 (APS-1) and produce a broad range of autoantibodies (auto-Abs), including circulating auto-Abs neutralizing most type I interferons (IFNs). These auto-Abs were recently reported to account for at least 10% of cases of life-threatening COVID-19 pneumonia in the general population. We report 22 APS-1 patients from 21 kindreds in seven countries, aged between 8 and 48 yr and infected with SARS-CoV-2 since February 2020. The 21 patients tested had auto-Abs neutralizing IFN-α subtypes and/or IFN-ω; one had anti-IFN-β and another anti-IFN-ε, but none had anti-IFN-κ. Strikingly, 19 patients (86%) were hospitalized for COVID-19 pneumonia, including 15 (68%) admitted to an intensive care unit, 11 (50%) who required mechanical ventilation, and four (18%) who died. Ambulatory disease in three patients (14%) was possibly accounted for by prior or early specific interventions. Preexisting auto-Abs neutralizing type I IFNs in APS-1 patients confer a very high risk of life-threatening COVID-19 pneumonia at any age.
  •  
2.
  • Best, Mairi, et al. (författare)
  • EMSO: A distributed infrastructure for addressing geohazards and global ocean change
  • 2014
  • Ingår i: Oceanography. - : The Oceanography Society. - 1042-8275. ; 27:2, s. 167-169
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Multidisciplinary Seafloor and water-column Observatory (EMSO; http://www.emso-eu.org) is addressing the next challenge in Earth-ocean science: how to coordinate data acquisition, analysis, archiving, access, and response to geohazards across provincial, national, regional, and international boundaries. Such coordination is needed to optimize the use of current and planned ocean observatory systems to (1) address national and regional public safety concerns about geohazards (e.g., earthquakes, submarine landslides, tsunamis) and (2) permit broadening of their scope toward monitoring environmental change on global ocean scales.
  •  
3.
  • Jansson, Pär, et al. (författare)
  • A new numerical model for understanding free and dissolved gas progression toward the atmosphere in aquatic methane seepage systems
  • 2019
  • Ingår i: Limnology and Oceanography : Methods. - : Wiley. - 1541-5856. ; 17:3, s. 223-239
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 The Authors. Limnology and Oceanography: Methods published by Wiley Periodicals, Inc. on behalf of Association for the Sciences of Limnology and Oceanography. We present a marine two-phase gas model in one dimension (M2PG1) resolving interaction between the free and dissolved gas phases and the gas propagation toward the atmosphere in aquatic environments. The motivation for the model development was to improve the understanding of benthic methane seepage impact on aquatic environments and its effect on atmospheric greenhouse gas composition. Rising, dissolution, and exsolution of a wide size-range of bubbles comprising several gas species are modeled simultaneously with the evolution of the aqueous gas concentrations. A model sensitivity analysis elucidates the relative importance of process parameterizations and environmental effects on the gas behavior. The parameterization of transfer velocity across bubble rims has the greatest influence on the resulting gas distribution, and bubble sizes are critical for predicting the fate of emitted bubble gas. High salinity increases the rise height of bubbles; whereas temperature does not significantly alter it. Vertical mixing and aerobic oxidation play insignificant roles in environments where advection is important. The model, applied in an Arctic Ocean methane seepage location, showed good agreement with acoustically derived bubble rise heights and in situ sampled methane concentration profiles. Coupled with numerical ocean circulation and biogeochemical models, M2PG1 could predict the impact of benthic methane emissions on the marine environment and the atmosphere on long time scales and large spatial scales. Because of its flexibility, M2PG1 can be applied in a wide variety of environmental settings and future M2PG1 applications may include gas leakage from seafloor installations and bubble injection by wave action.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy