SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fiebig B) "

Sökning: WFRF:(Fiebig B)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antoniou, A. C., et al. (författare)
  • Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers
  • 2009
  • Ingår i: Human Molecular Genetics. - [Antoniou, Antonis C.; McGuffog, Lesley; Peock, Susan; Cook, Margaret; Frost, Debra; Oliver, Clare; Platte, Radka; Pooley, Karen A.; Easton, Douglas F.] Univ Cambridge, Dept Publ Hlth & Primary Care, Canc Res UK Genet Epidemiol Unit, Cambridge, England. [Sinilnikova, Olga M.; Leone, Melanie] Univ Lyon, CNRS, Hosp Civils Lyon,Ctr Leon Berard,UMR5201, Unite Mixte Genet Constitut Canc Frequents, Lyon, France. [Healey, Sue; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Chenevix-Trench, Georgia] Queensland Inst Med Res, Brisbane, Qld 4029, Australia. [Nevanlinna, Heli; Heikkinen, Tuomas] Univ Helsinki, Cent Hosp, Dept Obstet & Gynecol, FIN-00290 Helsinki, Finland. [Simard, Jacques] Univ Laval, Quebec City, PQ, Canada. [Simard, Jacques] Univ Quebec, Ctr Hosp, Canada Res Chair Oncogenet, Canc Genom Lab, Quebec City, PQ, Canada. Peter MacCallum Canc Inst, Melbourne, Vic 3002, Australia. [Neuhausen, Susan L.; Ding, Yuan C.] Univ Calif Irvine, Dept Epidemiol, Irvine, CA USA. [Couch, Fergus J.; Wang, Xianshu; Fredericksen, Zachary] Mayo Clin, Rochester, MN USA. [Peterlongo, Paolo; Peissel, Bernard; Radice, Paolo] Fdn IRCCS Ist Nazl Tumori, Milan, Italy. [Peterlongo, Paolo; Radice, Paolo] Fdn Ist FIRC Oncol Molecolare, Milan, Italy. [Bonanni, Bernardo; Bernard, Loris] Ist Europeo Oncol, Milan, Italy. [Viel, Alessandra] IRCCS, Ctr Riferimento Oncol, Aviano, Italy. [Bernard, Loris] Cogentech, Consortium Genom Technol, Milan, Italy. [Szabo, Csilla I.] Mayo Clin, Coll Med, Dept Lab Med & Pathol, Rochester, MN USA. [Foretova, Lenka] Masaryk Mem Canc Inst, Dept Canc Epidemiol & Genet, Brno, Czech Republic. [Zikan, Michal] Charles Univ Prague, Dept Biochem & Expt Oncol, Fac Med 1, Prague, Czech Republic. [Claes, Kathleen] Ghent Univ Hosp, Ctr Med Genet, B-9000 Ghent, Belgium. [Greene, Mark H.; Mai, Phuong L.] US Natl Canc Inst, Clin Genet Branch, Rockville, MD USA. [Rennert, Gad; Lejbkowicz, Flavio] CHS Natl Canc Control Ctr, Haifa, Israel. [Rennert, Gad; Lejbkowicz, Flavio] Carmel Hosp, Dept Community Med & Epidemiol, Haifa, Israel. [Rennert, Gad; Lejbkowicz, Flavio] B Rappaport Fac Med, Haifa, Israel. [Andrulis, Irene L.; Glendon, Gord] Canc Care Ontario, Ontario Canc Genet Network, Toronto, ON M5G 2L7, Canada. [Andrulis, Irene L.] Mt Sinai Hosp, Fred A Litwin Ctr Canc Genet, Samuel Lunenfeld Res Inst, Toronto, ON, Canada. [Andrulis, Irene L.] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada. [Gerdes, Anne-Marie; Thomassen, Mads] Odense Univ Hosp, Dept Biochem Pharmacol & Genet, DK-5000 Odense, Denmark. [Sunde, Lone] Aarhus Univ Hosp, Dept Clin Genet, DK-8000 Aarhus, Denmark. [Caligo, Maria A.] Univ Pisa, Div Surg Mol & Ultrastructural Pathol, Dept Oncol, Pisa, Italy. [Caligo, Maria A.] Pisa Univ Hosp, Pisa, Italy. [Laitman, Yael; Kontorovich, Tair; Cohen, Shimrit; Friedman, Eitan] Chaim Sheba Med Ctr, Susanne Levy Gertner Oncogenet Unit, IL-52621 Tel Hashomer, Israel. [Kaufman, Bella] Chaim Sheba Med Ctr, Inst Oncol, IL-52621 Tel Hashomer, Israel. [Kaufman, Bella; Friedman, Eitan] Tel Aviv Univ, Sackler Sch Med, IL-69978 Tel Aviv, Israel. [Dagan, Efrat; Baruch, Ruth Gershoni] Rambam Med Ctr, Genet Inst, Haifa, Israel. [Harbst, Katja] Lund Univ, Dept Oncol, S-22100 Lund, Sweden. [Barbany-Bustinza, Gisela; Rantala, Johanna] Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden. [Ehrencrona, Hans] Uppsala Univ, Dept Genet & Pathol, Uppsala, Sweden. [Karlsson, Per] Sahlgrenska Univ, Dept Oncol, Gothenburg, Sweden. [Domchek, Susan M.; Nathanson, Katherine L.] Univ Penn, Philadelphia, PA 19104 USA. [Osorio, Ana; Benitez, Javier] Ctr Invest Biomed Red Enfermedades Raras CIBERERE, Inst Salud Carlos III, Madrid, Spain. [Osorio, Ana; Benitez, Javier] Spanish Natl Canc Ctr CNIO, Human Canc Genet Programme, Human Genet Grp, Madrid, Spain. [Blanco, Ignacio] Catalan Inst Oncol ICO, Canc Genet Counseling Program, Barcelona, Spain. [Lasa, Adriana] Hosp Santa Creu & Sant Pau, Genet Serv, Barcelona, Spain. [Hamann, Ute] Deutsch Krebsforschungszentrum, Neuenheimer Feld 580 69120, D-6900 Heidelberg, Germany. [Hogervorst, Frans B. L.] Netherlands Canc Inst, Dept Pathol, Family Canc Clin, NL-1066 CX Amsterdam, Netherlands. [Rookus, Matti A.] Netherlands Canc Inst, Dept Epidemiol, Amsterdam, Netherlands. [Collee, J. Margriet] Erasmus Univ, Dept Clin Genet, Rotterdam Family Canc Clin, Med Ctr, NL-3000 DR Rotterdam, Netherlands. [Devilee, Peter] Dept Genet Epidemiol, Leiden, Netherlands. [Wijnen, Juul] Leiden Univ, Med Ctr, Ctr Human & Clin Genet, Leiden, Netherlands. [Ligtenberg, Marjolijn J.] Radboud Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6525 ED Nijmegen, Netherlands. [van der Luijt, Rob B.] Univ Utrecht, Med Ctr, Dept Clin Mol Genet, NL-3508 TC Utrecht, Netherlands. [Aalfs, Cora M.] Univ Amsterdam, Acad Med Ctr, Dept Clin Genet, NL-1105 AZ Amsterdam, Netherlands. [Waisfisz, Quinten] Vrije Univ Amsterdam, Med Ctr, Dept Clin Genet, Amsterdam, Netherlands. [van Roozendaal, Cornelis E. P.] Univ Med Ctr, Dept Clin Genet, Maastricht, Netherlands. [Evans, D. Gareth; Lalloo, Fiona] Cent Manchester Univ Hosp, NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, Manchester, Lancs, England. [Eeles, Rosalind] Inst Canc Res, Translat Canc Genet Team, London SW3 6JB, England. [Eeles, Rosalind] Royal Marsden NHS Fdn Trust, London, England. [Izatt, Louise] Guys Hosp, Clin Genet, London SE1 9RT, England. [Davidson, Rosemarie] Ferguson Smith Ctr Clin Genet, Glasgow, Lanark, Scotland. [Chu, Carol] Yorkshire Reg Genet Serv, Leeds, W Yorkshire, England. [Eccles, Diana] Princess Anne Hosp, Wessex Clin Genet Serv, Southampton, Hants, England. [Cole, Trevor] Birmingham Womens Hosp Healthcare, NHS Trust, W Midlands Reg Genet Serv, Birmingham, W Midlands, England. [Hodgson, Shirley] Univ London, Dept Canc Genet, St Georges Hosp, London, England. [Godwin, Andrew K.; Daly, Mary B.] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. [Stoppa-Lyonnet, Dominique] Univ Paris 05, Paris, France. [Stoppa-Lyonnet, Dominique] Inst Curie, INSERM U509, Serv Genet Oncol, Paris, France. [Buecher, Bruno] Inst Curie, Dept Genet, Paris, France. [Bressac-de Paillerets, Brigitte; Remenieras, Audrey; Lenoir, Gilbert M.] Inst Cancrol Gustave Roussy, Dept Genet, Villejuif, France. [Bressac-de Paillerets, Brigitte] Inst Cancerol Gustave Roussy, INSERM U946, Villejuif, France. [Caron, Olivier] Inst Cancerol Gustave Roussy, Dept Med, Villejuif, France. [Lenoir, Gilbert M.] Inst Cancerol Gustave Roussy, CNRS FRE2939, Villejuif, France. [Sevenet, Nicolas; Longy, Michel] Inst Bergonie, Lab Genet Constitutionnelle, Bordeaux, France. [Longy, Michel] Inst Bergonie, INSERM U916, Bordeaux, France. [Ferrer, Sandra Fert] Hop Hotel Dieu, Ctr Hosp, Lab Genet Chromosom, Chambery, France. [Prieur, Fabienne] CHU St Etienne, Serv Genet Clin Chromosom, St Etienne, France. [Goldgar, David] Univ Utah, Dept Dermatol, Salt Lake City, UT 84112 USA. [Miron, Alexander; Yassin, Yosuf] Dana Farber Canc Inst, Boston, MA 02115 USA. [John, Esther M.] No Calif Canc Ctr, Fremont, CA USA. [John, Esther M.] Stanford Univ, Sch Med, Stanford, CA 94305 USA. [Buys, Saundra S.] Univ Utah, Hlth Sci Ctr, Huntsman Canc Inst, Salt Lake City, UT USA. [Hopper, John L.] Univ Melbourne, Melbourne, Australia. [Terry, Mary Beth] Columbia Univ, New York, NY USA. [Singer, Christian; Gschwantler-Kaulich, Daphne; Staudigl, Christine] Med Univ Vienna, Div Special Gynecol, Dept OB GYN, Vienna, Austria. [Hansen, Thomas V. O.] Univ Copenhagen, Rigshosp, Dept Clin Biochem, DK-2100 Copenhagen, Denmark. [Barkardottir, Rosa Bjork] Landspitali Univ Hosp, Dept Pathol, Reykjavik, Iceland. [Kirchhoff, Tomas; Pal, Prodipto; Kosarin, Kristi; Offit, Kenneth] Mem Sloan Kettering Canc Ctr, Dept Med, Clin Genet Serv, New York, NY 10021 USA. [Piedmonte, Marion] Roswell Pk Canc Inst, GOG Stat & Data Ctr, Buffalo, NY 14263 USA. [Rodriguez, Gustavo C.] Evanston NW Healthcare, NorthShore Univ Hlth Syst, Evanston, IL 60201 USA. [Wakeley, Katie] Tufts Univ, New England Med Ctr, Boston, MA 02111 USA. [Boggess, John F.] Univ N Carolina, Chapel Hill, NC 27599 USA. [Basil, Jack] St Elizabeth Hosp, Edgewood, KY 41017 USA. [Schwartz, Peter E.] Yale Univ, Sch Med, New Haven, CT 06510 USA. [Blank, Stephanie V.] New York Univ, Sch Med, New York, NY 10016 USA. [Toland, Amanda E.] Ohio State Univ, Dept Internal Med, Columbus, OH 43210 USA. [Toland, Amanda E.] Ohio State Univ, Div Human Canc Genet, Ctr Comprehens Canc, Columbus, OH 43210 USA. [Montagna, Marco; Casella, Cinzia] IRCCS, Ist Oncologico Veneto, Immunol & Mol Oncol Unit, Padua, Italy. [Imyanitov, Evgeny N.] NN Petrov Inst Res Inst, St Petersburg, Russia. [Allavena, Anna] Univ Turin, Dept Genet Biol & Biochem, Turin, Italy. [Schmutzler, Rita K.; Versmold, Beatrix; Arnold, Norbert] Univ Cologne, Dept Obstet & Gynaecol, Div Mol Gynaeco Oncol, Cologne, Germany. [Engel, Christoph] Univ Leipzig, Inst Med Informat Stat & Epidemiol, Leipzig, Germany. [Meindl, Alfons] Tech Univ Munich, Dept Obstet & Gynaecol, Munich, Germany. [Ditsch, Nina] Univ Munich, Dept Obstet & Gynecol, Munich, Germany. Univ Schleswig Holstein, Dept Obstet & Gynaecol, Campus Kiel, Germany. [Niederacher, Dieter] Univ Duesseldorf, Dept Obstet & Gynaecol, Mol Genet Lab, Dusseldorf, Germany. [Deissler, Helmut] Univ Ulm, Dept Obstet & Gynaecol, Ulm, Germany. [Fiebig, Britta] Univ Regensburg, Inst Human Genet, Regensburg, Germany. [Suttner, Christian] Univ Heidelberg, Inst Human Genet, Heidelberg, Germany. [Schoenbuchner, Ines] Univ Wurzburg, Inst Human Genet, D-8700 Wurzburg, Germany. [Gadzicki, Dorothea] Med Univ, Inst Cellular & Mol Pathol, Hannover, Germany. [Caldes, Trinidad; de la Hoya, Miguel] Hosp Clinico San Carlos 28040, Madrid, Spain. : Oxford University Press. - 0964-6906 .- 1460-2083. ; 18:22, s. 4442-4456
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies of breast cancer have identified multiple single nucleotide polymorphisms (SNPs) that are associated with increased breast cancer risks in the general population. In a previous study, we demonstrated that the minor alleles at three of these SNPs, in FGFR2, TNRC9 and MAP3K1, also confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. Three additional SNPs rs3817198 at LSP1, rs13387042 at 2q35 and rs13281615 at 8q24 have since been reported to be associated with breast cancer in the general population, and in this study we evaluated their association with breast cancer risk in 9442 BRCA1 and 5665 BRCA2 mutation carriers from 33 study centres. The minor allele of rs3817198 was associated with increased breast cancer risk only for BRCA2 mutation carriers [hazard ratio (HR) = 1.16, 95% CI: 1.07-1.25, P-trend = 2.8 × 10-4]. The best fit for the association of SNP rs13387042 at 2q35 with breast cancer risk was a dominant model for both BRCA1 and BRCA2 mutation carriers (BRCA1: HR = 1.14, 95% CI: 1.04-1.25, P = 0.0047; BRCA2: HR = 1.18 95% CI: 1.04-1.33, P = 0.0079). SNP rs13281615 at 8q24 was not associated with breast cancer for either BRCA1 or BRCA2 mutation carriers, but the estimated association for BRCA2 mutation carriers (per-allele HR = 1.06, 95% CI: 0.98-1.14) was consistent with odds ratio estimates derived from population-based case-control studies. The LSP1 and 2q35 SNPs appear to interact multiplicatively on breast cancer risk for BRCA2 mutation carriers. There was no evidence that the associations vary by mutation type depending on whether the mutated protein is predicted to be stable or not. 
  •  
2.
  •  
3.
  •  
4.
  • Osorio, A., et al. (författare)
  • Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the consortium of investigators of modifiers of BRCA1/BRCA2 (CIMBA)
  • 2009
  • Ingår i: British Journal of Cancer. - : Nature Publishing Group. - 0007-0920 .- 1532-1827. ; 101:12, s. 2048-2054
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers. Methods: We have genotyped rs744154 in 9408 BRCA1 and 5632 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and assessed its association with breast cancer risk using a retrospective weighted cohort approach. Results: We found no evidence of association with breast cancer risk for BRCA1 (per-allele HR: 0.98, 95% CI: 0.93-1.04, P0.5) or BRCA2 (per-allele HR: 0.97, 95% CI: 0.89-1.06, P0.5) mutation carriers. Conclusion: This SNP is not a significant modifier of breast cancer risk for mutation carriers, though weak associations cannot be ruled out.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • van Ree, R, et al. (författare)
  • The CREATE project: development of certified reference materials for allergenic products and validation of methods for their quantification.
  • 2008
  • Ingår i: Allergy. - : Wiley. - 1398-9995 .- 0105-4538. ; 63:3, s. 310-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Allergen extracts have been used for diagnosis and treatment of allergy for around 100 years. During the second half of 20th century, the notion increasingly gained foothold that accurate standardization of such extracts is of great importance for improvement of their quality. As a consequence, manufacturers have implemented extensive protocols for standardization and quality control. These protocols have overall IgE-binding potencies as their focus. Unfortunately, each company is using their own in-house reference materials and their own unique units to express potencies. This does not facilitate comparison of different products. During the last decades, most major allergens of relevant allergen sources have been identified and it has been established that effective immunotherapy requires certain minimum quantities of these allergens to be present in the administered maintenance dose. Therefore, the idea developed to introduce major allergens measurements into standardization protocols. Such protocols based on mass units of major allergen, quantify the active ingredients of the treatment and will at the same time allow comparison of competitor products. In 2001, an EU funded project, the CREATE project, was started to support introduction of major allergen based standardization. The aim of the project was to evaluate the use of recombinant allergens as reference materials and of ELISA assays for major allergen measurements. This paper gives an overview of the achievements of the CREATE project.
  •  
10.
  • Wiedensohler, A., et al. (författare)
  • Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions
  • 2012
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 5:3, s. 657-685
  • Tidskriftsartikel (refereegranskat)abstract
    • Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer. We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data. Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research) and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around +/- 10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within +/- 4% in the peak particle number concentration when all settings were done carefully. The consistency of these reference instruments to the total particle number concentration was demonstrated to be less than 5%. Additionally, a new data structure for particle number size distributions was introduced to store and disseminate the data at EMEP (European Monitoring and Evaluation Program). This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between different networks and sites, and their transparency and traceability back to raw data.
  •  
11.
  • Akdis, M, et al. (författare)
  • Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells
  • 2004
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 199:11, s. 1567-1575
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms by which immune responses to nonpathogenic environmental antigens lead to either allergy or nonharmful immunity are unknown. Single allergen-specific T cells constitute a very small fraction of the whole CD4(+) T cell repertoire and can be isolated from the peripheral blood of humans according to their cytokine profile. Freshly purified interferon-gamma-, interleukin (IL)-4-, and IL-10-producing allergen-specific CD4(+) T cells display characteristics of T helper cell (Th)1-, Th2, and T regulatory (Tr)1-like cells, respectively. Tr1 cells consistently represent the dominant subset specific for common environmental allergens in healthy individuals; in contrast, there is a high frequency of allergen-specific IL-4-secreting T cells in allergic individuals. Tr1 cells use multiple suppressive mechanisms, IL-10 and TGF-beta as secreted cytokines, and cytotoxic T lymphocyte antigen 4 and programmed death 1 as surface molecules. Healthy and allergic individuals exhibit all three allergen-specific subsets in different proportions, indicating that a change in the dominant subset may lead to allergy development or recovery. Accordingly, blocking the suppressor activity of Tr1 cells or increasing Th2 cell frequency enhances allergen-specific Th2 cell activation ex vivo. These results indicate that the balance between allergen-specific Tr1 cells and Th2 cells may be decisive in the development of allergy.
  •  
12.
  • Asmi, A., et al. (författare)
  • Number size distributions and seasonality of submicron particles in = rope 2008-2009
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:11, s. 5505-5538
  • Tidskriftsartikel (refereegranskat)abstract
    • Two years of harmonized aerosol number size distribution data from 24 = ropean field monitoring sites have been analysed. The results give a = mprehensive overview of the European near surface aerosol particle = mber concentrations and number size distributions between 30 and 500 = of dry particle diameter. Spatial and temporal distribution of = rosols in the particle sizes most important for climate applications = e presented. We also analyse the annual, weekly and diurnal cycles of = e aerosol number concentrations, provide log-normal fitting parameters = r median number size distributions, and give guidance notes for data = ers. Emphasis is placed on the usability of results within the aerosol = delling community.
  •  
13.
  • Beddows, D. C. S., et al. (författare)
  • Variations in tropospheric submicron particle size distributions across the European continent 2008-2009
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:8, s. 4327-4348
  • Tidskriftsartikel (refereegranskat)abstract
    • Cluster analysis of particle number size distributions from background sites across Europe is presented. This generated a total of nine clusters of particle size distributions which could be further combined into two main groups, namely: a south-to-north category (four clusters) and a west-to-east category (five clusters). The first group was identified as most frequently being detected inside and around northern Germany and neighbouring countries, showing clear evidence of local afternoon nucleation and growth events that could be linked to movement of air masses from south to north arriving ultimately at the Arctic contributing to Arctic haze. The second group of particle size spectra proved to have narrower size distributions and collectively showed a dependence of modal diameter upon the longitude of the site (west to east) at which they were most frequently detected. These clusters indicated regional nucleation (at the coastal sites) growing to larger modes further inland. The apparent growth rate of the modal diameter was around 0.6-0.9 nm h(-1). Four specific air mass back-trajectories were successively taken as case studies to examine in real time the evolution of aerosol size distributions across Europe. While aerosol growth processes can be observed as aerosol traverses Europe, the processes are often obscured by the addition of aerosol by emissions en route. This study revealed that some of the 24 stations exhibit more complex behaviour than others, especially when impacted by local sources or a variety of different air masses. Overall, the aerosol size distribution clustering analysis greatly simplifies the complex data set and allows a description of aerosol aging processes, which reflects the longer-term average development of particle number size distributions as air masses advect across Europe.
  •  
14.
  •  
15.
  • Leinonen, Ville, et al. (författare)
  • Comparison of particle number size distribution trends in ground measurements and climate models
  • 2022
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:19, s. 12873-12905
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite a large number of studies, out of all drivers of radiative forcing, the effect of aerosols has the largest uncertainty in global climate model radiative forcing estimates. There have been studies of aerosol optical properties in climate models, but the effects of particle number size distribution need a more thorough inspection. We investigated the trends and seasonality of particle number concentrations in nucleation, Aitken, and accumulation modes at 21 measurement sites in Europe and the Arctic. For 13 of those sites, with longer measurement time series, we compared the field observations with the results from five climate models, namely EC-Earth3, ECHAM-M7, ECHAM-SALSA, NorESM1.2, and UKESM1. This is the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five earth system models (ESMs). We found that the trends of particle number concentrations were mostly consistent and decreasing in both measurements and models. However, for many sites, climate models showed weaker decreasing trends than the measurements. Seasonal variability in measured number concentrations, quantified by the ratio between maximum and minimum monthly number concentration, was typically stronger at northern measurement sites compared to other locations. Models had large differences in their seasonal representation, and they can be roughly divided into two categories: for EC-Earth and NorESM, the seasonal cycle was relatively similar for all sites, and for other models the pattern of seasonality varied between northern and southern sites. In addition, the variability in concentrations across sites varied between models, some having relatively similar concentrations for all sites, whereas others showed clear differences in concentrations between remote and urban sites. To conclude, although all of the model simulations had identical input data to describe anthropogenic mass emissions, trends in differently sized particles vary among the models due to assumptions in emission sizes and differences in how models treat size-dependent aerosol processes. The inter-model variability was largest in the accumulation mode, i.e. sizes which have implications for aerosol–cloud interactions. Our analysis also indicates that between models there is a large variation in efficiency of long-range transportation of aerosols to remote locations. The differences in model results are most likely due to the more complex effect of different processes instead of one specific feature (e.g. the representation of aerosol or emission size distributions). Hence, a more detailed characterization of microphysical processes and deposition processes affecting the long-range transport is needed to understand the model variability.
  •  
16.
  • Platt, Stephen M., et al. (författare)
  • Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ålesund
  • 2022
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:5, s. 3321-3369
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zeppelin Observatory (78.90∘ N, 11.88∘ E) is located on Zeppelin Mountain at 472 m a.s.l. on Spitsbergen, the largest island of the Svalbard archipelago. Established in 1989, the observatory is part of Ny-Ålesund Research Station and an important atmospheric measurement site, one of only a few in the high Arctic, and a part of several European and global monitoring programmes and research infrastructures, notably the European Monitoring and Evaluation Programme (EMEP); the Arctic Monitoring and Assessment Programme (AMAP); the Global Atmosphere Watch (GAW); the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS); the Advanced Global Atmospheric Gases Experiment (AGAGE) network; and the Integrated Carbon Observation System (ICOS). The observatory is jointly operated by the Norwegian Polar Institute (NPI), Stockholm University, and the Norwegian Institute for Air Research (NILU). Here we detail the establishment of the Zeppelin Observatory including historical measurements of atmospheric composition in the European Arctic leading to its construction. We present a history of the measurements at the observatory and review the current state of the European Arctic atmosphere, including results from trends in greenhouse gases, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), other traces gases, persistent organic pollutants (POPs) and heavy metals, aerosols and Arctic haze, and atmospheric transport phenomena, and provide an outline of future research directions.
  •  
17.
  •  
18.
  • van de Schootbrugge, B., et al. (författare)
  • Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism
  • 2009
  • Ingår i: Nature Geoscience. - 1752-0908. ; 2:8, s. 589-594
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the five largest mass extinctions of the past 600 million years occurred at the boundary of the Triassic and Jurassic periods, 201.6 million years ago. The loss of marine biodiversity at the time has been linked to extreme greenhouse warming, triggered by the release of carbon dioxide from flood basalt volcanism in the central Atlantic Ocean. In contrast, the biotic turnover in terrestrial ecosystems is not well understood, and cannot be readily reconciled with the effects of massive volcanism. Here we present pollen, spore and geochemical analyses across the Triassic/Jurassic boundary from three drill cores from Germany and Sweden. We show that gymnosperm forests in northwest Europe were transiently replaced by fern and fern-associated vegetation, a pioneer assemblage commonly found in disturbed ecosystems. The Triassic/Jurassic boundary is also marked by an enrichment of polycyclic aromatic hydrocarbons, which, in the absence of charcoal peaks, we interpret as an indication of incomplete combustion of organic matter by ascending flood basalt lava. We conclude that the terrestrial vegetation shift is so severe and wide ranging that it is unlikely to have been triggered by greenhouse warming alone. Instead, we suggest that the release of pollutants such as sulphur dioxide and toxic compounds such as the polycyclic aromatic hydrocarbons may have contributed to the extinction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy