SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fioretti V.) "

Sökning: WFRF:(Fioretti V.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdalla, H., et al. (författare)
  • Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation
  • 2021
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : Institute of Physics Publishing (IOPP). - 1475-7516. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for gamma-ray astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of gamma-ray cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of gamma-ray absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z = 2 and to constrain or detect gamma-ray halos up to intergalactic-magnetic-field strengths of at least 0.3 pG. Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from gamma-ray astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of gamma-ray cosmology.
  •  
2.
  • Acero, F., et al. (författare)
  • Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946
  • 2017
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 840:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti) correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.
  •  
3.
  • De Angelis, A., et al. (författare)
  • Science with e-ASTROGAM A space mission for MeV-GeV gamma-ray astrophysics
  • 2018
  • Ingår i: Journal of High Energy Astrophysics. - : Elsevier. - 2214-4048 .- 2214-4056. ; 19, s. 1-106
  • Tidskriftsartikel (refereegranskat)abstract
    • e-ASTROGAM ('enhanced ASTROGAM') is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV - the lower energy limit can be pushed to energies as low as 150 keV for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and LISA.
  •  
4.
  • Acharyya, A., et al. (författare)
  • Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout
  • 2019
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 111, s. 35-53
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based veryhigh-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possible by using tens of imaging Cherenkov telescopes of three successive sizes. They will be arranged into two arrays, one per hemisphere, located on the La Palma island (Spain) and in Paranal (Chile). We present here the optimised and final telescope arrays for both CTA sites, as well as their foreseen performance, resulting from the analysis of three different large-scale Monte Carlo productions.
  •  
5.
  • Chen, A. W., et al. (författare)
  • Calibration of AGILE-GRID with in-flight data and Monte Carlo simulations
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 558, s. A37-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. AGILE is a γ-ray astrophysics mission which has been in orbit since 23 April 2007 and continues to operate reliably. The γ-ray detector, AGILE-GRID, has observed Galactic and extragalactic sources, many of which were collected in the first AGILE Catalog. Aims. We present the calibration of the AGILE-GRID using in-flight data and Monte Carlo simulations, producing instrument response functions (IRFs) for the effective area (A eff), energy dispersion probability (EDP), and point spread function (PSF), each as a function of incident direction in instrument coordinates and energy. Methods. We performed Monte Carlo simulations at different γ-ray energies and incident angles, including background rejection filters and Kalman filter-based γ-ray reconstruction. Long integrations of in-flight observations of the Vela, Crab and Geminga sources in broad and narrow energy bands were used to validate and improve the accuracy of the instrument response functions. Results. The weighted average PSFs as a function of spectra correspond well to the data for all sources and energy bands. Conclusions. Changes in the interpolation of the PSF from Monte Carlo data and in the procedure for construction of the energy-weighted effective areas have improved the correspondence between predicted and observed fluxes and spectra of celestial calibration sources, reducing false positives and obviating the need for post-hoc energy-dependent scaling factors. The new IRFs have been publicly available from the AGILE Science Data Center since November 25, 2011, while the changes in the analysis software will be distributed in an upcoming release.
  •  
6.
  • de Angelis, A., et al. (författare)
  • All-sky-astrogam : A MeV companion for multimessenger astrophysics
  • 2019
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • In the era of multi-messenger astronomy it is of paramount importance to have in space a gamma-ray monitor capable of detecting energetic transients in the energy range from 0.1 MeV to a few hundred MeV, with good imaging capabilities. The All-Sky-ASTROGAM mission proposal aims to place into an L2 orbit a gamma-ray instrument (~ 100 kg) dedicated to fast detection, localization, and gamma-ray spectroscopy of flaring and merging activity of compact objects in the Universe, with unprecedented sensitivity and polarimetric capability in the MeV range. The instrument is based on the ASTROGAM concept, which combines three detection systems of space-proven technology: a silicon tracker in which the cosmic gamma rays undergo Compton scattering or a pair conversion, a scintillation calorimeter to absorb and measure the energy of the secondary particles, and an anticoincidence system to veto the prompt reaction background induced by charged particles. The gamma-ray imager and the platform will be connected through a boom and will have almost no occultation, making possible a continuous monitoring of every single gamma-ray source in the sky during the entire mission lifetime.
  •  
7.
  • De Angelis, A., et al. (författare)
  • All-Sky-ASTROGAM : a MeV Companion for Multimessenger Astrophysics
  • 2021
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • In the era of multi-messenger astronomy it is of paramount importance to have in space a gamma-ray monitor capable of detecting energetic transients in the energy range from 0.1 MeV to a few hundred MeV, with good imaging capabilities. The All-Sky-ASTROGAM mission proposal aims to place into an L2 orbit a gamma-ray instrument (∼ 100 kg) dedicated to fast detection, localization, and gamma-ray spectroscopy of flaring and merging activity of compact objects in the Universe, with unprecedented sensitivity and polarimetric capability in the MeV range. The instrument is based on the ASTROGAM concept, which combines three detection systems of space-proven technology: a silicon tracker in which the cosmic gamma rays undergo Compton scattering or a pair conversion, a scintillation calorimeter to absorb and measure the energy of the secondary particles, and an anticoincidence system to veto the prompt reaction background induced by charged particles. The gamma-ray imager and the platform will be connected through a boom and will have almost no occultation, making possible a continuous monitoring of every single gamma-ray source in the sky during the entire mission lifetime.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy