SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fischer Hubertus) "

Sökning: WFRF:(Fischer Hubertus)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adolphi, Florian, et al. (författare)
  • Connecting the Greenland ice-core and U/Th timescales via cosmogenic radionuclides : Testing the synchroneity of Dansgaard-Oeschger events
  • 2018
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 14:11, s. 1755-1781
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last glacial period Northern Hemisphere climate was characterized by extreme and abrupt climate changes, so-called Dansgaard-Oeschger (DO) events. Most clearly observed as temperature changes in Greenland ice-core records, their climatic imprint was geographically widespread. However, the temporal relation between DO events in Greenland and other regions is uncertain due to the chronological uncertainties of each archive, limiting our ability to test hypotheses of synchronous change. In contrast, the assumption of direct synchrony of climate changes forms the basis of many timescales. Here, we use cosmogenic radionuclides (10Be, 36Cl, 14C) to link Greenland ice-core records to U=Th-dated speleothems, quantify offsets between the two timescales, and improve their absolute dating back to 45 000 years ago. This approach allows us to test the assumption that DO events occurred synchronously between Greenland ice-core and tropical speleothem records with unprecedented precision. We find that the onset of DO events occurs within synchronization uncertainties in all investigated records. Importantly, we demonstrate that local discrepancies remain in the temporal development of rapid climate change for specific events and speleothems. These may either be related to the location of proxy records relative to the shifting atmospheric fronts or to underestimated U=Th dating uncertainties. Our study thus highlights the potential for misleading interpretations of the Earth system when applying the common practice of climate wiggle matching.
  •  
2.
  • Erhardt, Tobias, et al. (författare)
  • Decadal-scale progression of the onset of Dansgaard-Oeschger warming events
  • 2019
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 15:2, s. 811-825
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last glacial period, proxy records throughout the Northern Hemisphere document a succession of rapid millennial-scale warming events, called Dansgaard-Oeschger (DO) events. A range of different mechanisms has been proposed that can produce similar warming in model experiments; however, the progression and ultimate trigger of the events are still unknown. Because of their fast nature, the progression is challenging to reconstruct from paleoclimate data due to the limited temporal resolution achievable in many archives and cross-dating uncertainties between records. Here, we use new high-resolution multi-proxy records of sea-salt (derived from sea spray and sea ice over the North Atlantic) and terrestrial (derived from the central Asian deserts) aerosol concentrations over the period 10-60 ka from the North Greenland Ice Core Project (NGRIP) and North Greenland Eemian Ice Drilling (NEEM) ice cores in conjunction with local precipitation and temperature proxies from the NGRIP ice core to investigate the progression of environmental changes at the onset of the warming events at annual to multi-annual resolution. Our results show on average a small lead of the changes in both local precipitation and terrestrial dust aerosol concentrations over the change in sea-salt aerosol concentrations and local temperature of approximately one decade. This suggests that, connected to the reinvigoration of the Atlantic meridional overturning circulation and the warming in the North Atlantic, both synoptic and hemispheric atmospheric circulation changes at the onset of the DO warming, affecting both the moisture transport to Greenland and the Asian monsoon systems. Taken at face value, this suggests that a collapse of the sea-ice cover may not have been the initial trigger for the DO warming.
  •  
3.
  • Erhardt, Tobias, et al. (författare)
  • High-resolution aerosol concentration data from the Greenland NorthGRIP and NEEM deep ice cores
  • 2022
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 14:3, s. 1215-1231
  • Tidskriftsartikel (refereegranskat)abstract
    • Records of chemical impurities from ice cores enable us to reconstruct the past deposition of aerosols onto polar ice sheets and alpine glaciers. Through this they allow us to gain insight into changes of the source, transport and deposition processes that ultimately determine the deposition flux at the coring location. However, the low concentrations of the aerosol species in the ice and the resulting high risk of contamination pose a formidable analytical challenge, especially if long, continuous and highly resolved records are needed. Continuous flow analysis, CFA, the continuous melting, decontamination and analysis of ice-core samples has mostly overcome this issue and has quickly become the de facto standard to obtain high-resolution aerosol records from ice cores after its inception at the University of Bern in the mid-1990s.Here, we present continuous records of calcium (Ca2+), sodium (Na+), ammonium (NH+4), nitrate (NO-3) and electrolytic conductivity at 1 mm depth resolution from the NGRIP (North Greenland Ice Core Project) and NEEM (North Greenland Eemian Ice Drilling) ice cores produced by the Bern Continuous Flow Analysis group in the years 2000 to 2011 (Erhardt et al., 2021). Both of the records were previously used in a number of studies but were never published in full 1 mm resolution. Alongside the 1 mm datasets we provide decadal averages, a detailed description of the methods, relevant references, an assessment of the quality of the data and its usable resolution. Along the way we will also give some historical context on the development of the Bern CFA system.
  •  
4.
  • Erhardt, Tobias, et al. (författare)
  • High-resolution aerosol data from the top 3.8kyr of the East Greenland Ice coring Project (EGRIP) ice core
  • 2023
  • Ingår i: Earth System Science Data. - 1866-3508. ; 15:11, s. 5079-5091
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we present the high-resolution continuous flow analysis (CFA) data from the top 479m of the East Greenland Ice coring Project (EGRIP) ice core covering the past 3.8kyr. The data consist of 1mm depth-resolution profiles of calcium, sodium, ammonium, nitrate, and electrolytic conductivity as well as decadal averages of these profiles. The nominally 1mm data represent an oversampling of the record as the true resolution is limited by the analytical setup to approximately 1cm. Alongside the data we provide a description of the measurement setup, procedures, the relevant references for the specific methods as well as an assessment of the precision of the measurements, the sample-to-depth assignment, and the depth and temporal resolution of the data set. The error in absolute depth assignment of the data may be on the order of 2cm; however, relative depth offsets between the records of the individual species are only on the order of 1mm. The presented data have sub-annual resolution over the entire depth range and have already formed part of the data for an annually layer-counted timescale for the EGRIP ice core used to improve and revise the multi-core Greenland ice-core chronology (GICC05) to a new version, GICC21 . The data are available in full 1mm resolution and decadal averages on PANGAEA (10.1594/PANGAEA.945293, ).
  •  
5.
  • Fischer, Hubertus, et al. (författare)
  • Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond
  • 2018
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 11:7, s. 474-485
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past 3.5 million years, there have been several intervals when climate conditions were warmer than during the pre-industrial Holocene. Although past intervals of warming were forced differently than future anthropogenic change, such periods can provide insights into potential future climate impacts and ecosystem feedbacks, especially over centennial-to-millennial timescales that are often not covered by climate model simulations. Our observation-based synthesis of the understanding of past intervals with temperatures within the range of projected future warming suggests that there is a low risk of runaway greenhouse gas feedbacks for global warming of no more than 2 °C. However, substantial regional environmental impacts can occur. A global average warming of 1–2 °C with strong polar amplification has, in the past, been accompanied by significant shifts in climate zones and the spatial distribution of land and ocean ecosystems. Sustained warming at this level has also led to substantial reductions of the Greenland and Antarctic ice sheets, with sea-level increases of at least several metres on millennial timescales. Comparison of palaeo observations with climate model results suggests that, due to the lack of certain feedback processes, model-based climate projections may underestimate long-term warming in response to future radiative forcing by as much as a factor of two, and thus may also underestimate centennial-to-millennial-scale sea-level rise.
  •  
6.
  •  
7.
  • Fischer, Hubertus, et al. (författare)
  • Reconstruction of millennial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica
  • 2007
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X. ; 260, s. 340-354
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuous sea salt and mineral dust aerosol records have been studied on the two EPICA (European Project for Ice Coring inAntarctica) deep ice cores. The joint use of these records from opposite sides of the East Antarctic plateau allows for an estimate ofchanges in dust transport and emission intensity as well as for the identification of regional differences in the sea salt aerosolsource. The mineral dust flux records at both sites show a strong coherency over the last 150 kyr related to dust emission changes inthe glacial Patagonian dust source with three times higher dust fluxes in the Atlantic compared to the Indian Ocean sector of theSouthern Ocean (SO). Using a simple conceptual transport model this indicates that transport can explain only 40% of theatmospheric dust concentration changes in Antarctica, while factor 5–10 changes occurred. Accordingly, the main cause for the strong glacial dust flux changes in Antarctica must lie in environmental changes in Patagonia. Dust emissions, hence environmentalconditions in Patagonia, were very similar during the last two glacials and interglacials, respectively, despite 2–4 °C warmertemperatures recorded in Antarctica during the penultimate interglacial than today. 2–3 times higher sea salt fluxes found in bothice cores in the glacial compared to the Holocene are difficult to reconcile with a largely unchanged transport intensity and thedistant open ocean source. The substantial glacial enhancements in sea salt aerosol fluxes can be readily explained assuming sea iceformation as the main sea salt aerosol source with a significantly larger expansion of (summer) sea ice in the Weddell Sea than inthe Indian Ocean sector. During the penultimate interglacial, our sea salt records point to a 50% reduction of winter sea icecoverage compared to the Holocene both in the Indian and Atlantic Ocean sector of the SO. However, from 20 to 80 ka beforepresent sea salt fluxes show only very subdued millennial changes despite pronounced temperature fluctuations, likely due to thelarge distance of the sea ice salt source to our drill sites.
  •  
8.
  • Kageyama, Masa, et al. (författare)
  • The PMIP4 contribution to CMIP6-Part 1 : Overview and over-arching analysis plan
  • 2018
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 11:3, s. 1033-1057
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper is the first of a series of four GMD papers on the PMIP4-CMIP6 experiments. Part 2 (OttoBliesner et al., 2017) gives details about the two PMIP4-CMIP6 interglacial experiments, Part 3 (Jungclaus et al., 2017) about the last millennium experiment, and Part 4 (Kageyama et al., 2017) about the Last Glacial Maximum experiment. The mid-Pliocene Warm Period experiment is part of the Pliocene Model Intercomparison Project (PlioMIP) Phase 2, detailed in Haywood et al. (2016). The goal of the Paleoclimate Modelling Intercomparison Project (PMIP) is to understand the response of the climate system to different climate forcings for documented climatic states very different from the present and historical climates. Through comparison with observations of the environmental impact of these climate changes, or with climate reconstructions based on physical, chemical, or biological records, PMIP also addresses the issue of how well state-of-the-art numerical models simulate climate change. Climate models are usually developed using the present and historical climates as references, but climate projections show that future climates will lie well outside these conditions. Palaeoclimates very different from these reference states therefore provide stringent tests for state-of-the-art models and a way to assess whether their sensitivity to forcings is compatible with palaeoclimatic evidence. Simulations of five different periods have been designed to address the objectives of the sixth phase of the Coupled Model Intercomparison Project (CMIP6): the millennium prior to the industrial epoch (CMIP6 name: past1000); the mid-Holocene, 6000 years ago (midHolocene); the Last Glacial Maximum, 21 000 years ago (lgm); the Last Interglacial, 127 000 years ago (lig127k); and the mid-Pliocene Warm Period, 3.2 million years ago (midPliocene-eoi400). These climatic periods are well documented by palaeoclimatic and palaeoenvironmental records, with climate and environmental changes relevant for the study and projection of future climate changes. This paper describes the motivation for the choice of these periods and the design of the numerical experiments and database requests, with a focus on their novel features compared to the experiments performed in previous phases of PMIP and CMIP. It also outlines the analysis plan that takes advantage of the comparisons of the results across periods and across CMIP6 in collaboration with other MIPs.
  •  
9.
  • Kaufmann, Patrik, et al. (författare)
  • Ammonium and non-sea salt sulfate in the EPICA ice cores as indicator of biological activity in the Southern Ocean
  • 2010
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 29:02-jan, s. 313-323
  • Tidskriftsartikel (refereegranskat)abstract
    • Sulfate (SO42-) and ammonium (NH4+) flux records over the last 150,000 years from both Antarctic EPICA ice cores (European Project for Ice Coring in Antarctica) are presented. The ice core record from Dome C is influenced by the Indian sector of the Southern Ocean (SO), whereas Dronning Maud Land is facing the Atlantic sector. Generally, they reflect the past atmospheric aerosol load and, thus, potentially reveal the fingerprint of marine biogenic sources from the SO. The most important feature of both, the nssSO(4)(2-) as well as NH4+ flux records, is the absence of any significant glacial cycles, in contrary to the distinct transitions for mineral dust and sea salt aerosol over the last 150,000 years. This finding challenges the iron fertilization hypothesis on long time scales, as the significant changes in dust, e.g. from the last glacial maximum toward the Holocene have neither an impact on nssSO(4)(2-) nor on NH4+ fluxes found in interior Antarctica. The inter-site correlation of both species is weak, r(2) = 0.42 for the nssSO(4)(2-) flux and r(2) = 0.12 for the NH4+ flux respectively, emphasizing the local Source characteristics of biogenic aerosol from the SO. Millennial variability in NH4+ and nssSO(4)(2-) is within the uncertainty of our flux estimates. Correlation with mineral dust and sea ice derived sodium shows only a very weak influence of dust deposition on those insignificant changes in nssSO(4)(2-) flux for the Atlantic sector of the Southern Ocean, but also small transport changes or terrigeneous sulfate contributions may contribute to those variations at EDML.
  •  
10.
  • Mulvaney, Robert, et al. (författare)
  • The ST22 chronology for the Skytrain Ice Rise ice core - Part 2 : An age model to the last interglacial and disturbed deep stratigraphy
  • 2023
  • Ingår i: Climate of the Past. - 1814-9324. ; 19:4, s. 851-864
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an age model for the 651g€¯m deep ice core from Skytrain Ice Rise, situated inland of the Ronne Ice Shelf, Antarctica. The top 2000 years have previously been dated using age markers interpolated through annual layer counting. Below this, we align the Skytrain core to the AICC2012 age model using tie points in the ice and air phase, and we apply the Paleochrono program to obtain the best fit to the tie points and glaciological constraints. In the gas phase, ties are made using methane and, in critical sections, δ18Oair; in the ice phase ties are through 10Be across the Laschamps event and through ice chemistry related to long-range dust transport and deposition. This strategy provides a good outcome to about 108g€¯ka (g1/4g€¯605g€¯m). Beyond that there are signs of flow disturbance, with a section of ice probably repeated. Nonetheless values of CH4 and δ18Oair confirm that part of the last interglacial (LIG), from about 117-126g€¯ka (617-627g€¯m), is present and in chronological order. Below this there are clear signs of stratigraphic disturbance, with rapid oscillation of values in both the ice and gas phase at the base of the LIG section, below 628g€¯m. Based on methane values, the warmest part of the LIG and the coldest part of the penultimate glacial are missing from our record. Ice below 631g€¯m appears to be of ageg€¯>g€¯150g€¯ka.
  •  
11.
  • Otto-Bliesner, Bette L., et al. (författare)
  • The PMIP4 contribution to CMIP6-Part 2 : Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations
  • 2017
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:11, s. 3979-4003
  • Tidskriftsartikel (refereegranskat)abstract
    • Two interglacial epochs are included in the suite of Paleoclimate Modeling Intercomparison Project (PMIP4) simulations in the Coupled Model Intercomparison Project (CMIP6). The experimental protocols for simulations of the mid-Holocene (midHolocene, 6000 years before present) and the Last Interglacial (lig127k, 127 000 years before present) are described here. These equilibrium simulations are designed to examine the impact of changes in orbital forcing at times when atmospheric greenhouse gas levels were similar to those of the preindustrial period and the continental configurations were almost identical to modern ones. These simulations test our understanding of the interplay between radiative forcing and atmospheric circulation, and the connections among large-scale and regional climate changes giving rise to phenomena such as land-sea contrast and high-latitude amplification in temperature changes, and responses of the monsoons, as compared to today. They also provide an opportunity, through carefully designed additional sensitivity experiments, to quantify the strength of atmosphere, ocean, cryosphere, and land-surface feedbacks. Sensitivity experiments are proposed to investigate the role of freshwater forcing in triggering abrupt climate changes within interglacial epochs. These feedback experiments naturally lead to a focus on climate evolution during interglacial periods, which will be examined through transient experiments. Analyses of the sensitivity simulations will also focus on interactions between extratropical and tropical circulation, and the relationship between changes in mean climate state and climate variability on annual to multi-decadal timescales. The comparative abundance of paleoenvironmental data and of quantitative climate reconstructions for the Holocene and Last Interglacial make these two epochs ideal candidates for systematic evaluation of model performance, and such comparisons will shed new light on the importance of external feedbacks (e.g., vegetation, dust) and the ability of state-of-the-art models to simulate climate changes realistically.
  •  
12.
  • Oyabu, Ikumi, et al. (författare)
  • Chemical compositions of solid particles present in the Greenland NEEM ice core over the last 110,000 years
  • 2015
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 120:18, s. 9789-9813
  • Tidskriftsartikel (refereegranskat)abstract
    • This study reports the chemical composition of particles present along Greenland's North Greenland Eemian Ice Drilling (NEEM) ice core, back to 110,000years before present. Insoluble and soluble particles larger than 0.45 mu m were extracted from the ice core by ice sublimation, and their chemical composition was analyzed using scanning electron microscope and energy dispersive X-ray spectroscopy and micro-Raman spectroscopy. We show that the dominant insoluble components are silicates, whereas NaCl, Na2SO4, CaSO4, and CaCO3 represent major soluble salts. For the first time, particles of CaMg(CO3)(2) and Ca(NO3)(2)center dot 4H(2)O are identified in a Greenland ice core. The chemical speciation of salts varies with past climatic conditions. Whereas the fraction of Na salts (NaCl+Na2SO4) exceeds that of Ca salts (CaSO4+CaCO3) during the Holocene (0.6-11.7kyr B.P.), the two fractions are similar during the BOlling-AllerOd period (12.9-14.6kyr B.P.). During cold climate such as over the Younger Dryas (12.0-12.6kyr B.P.) and the Last Glacial Maximum (15.0-26.9kyr B.P.), the fraction of Ca salts exceeds that of Na salts, showing that the most abundant ion generally controls the salt budget in each period. High-resolution analyses reveal changing particle compositions: those in Holocene ice show seasonal changes, and those in LGM ice show a difference between cloudy bands and clear layers, which again can be largely explained by the availability of ionic components in the atmospheric aerosol body of air masses reaching Greenland.
  •  
13.
  • Rasmussen, Sune Olander, et al. (författare)
  • Ice-core data used for the construction of the Greenland Ice-Core Chronology 2005 and 2021 (GICC05 and GICC21)
  • 2023
  • Ingår i: Earth System Science Data. - 1866-3508 .- 1866-3516. ; 15:8, s. 3351-3364
  • Tidskriftsartikel (refereegranskat)abstract
    • We here describe, document, and make available a wide range of data sets used for annual-layer identification in ice cores from DYE-3, GRIP, NGRIP, NEEM, and EGRIP. The data stem from detailed measurements performed both on the main deep cores and shallow cores over more than 40 years using many different setups developed by research groups in several countries and comprise both discrete measurements from cut ice samples and continuous-flow analysis data.The data series were used for counting annual layers 60 000 years back in time during the construction of the Greenland Ice-Core Chronology 2005 (GICC05) and/or the revised GICC21, which currently only reaches 3800 years back. Now that the underlying data are made available (listed in Table 1) we also release the individual annual-layer positions of the GICC05 timescale which are based on these data sets.We hope that the release of the data sets will stimulate further studies of the past climate taking advantage of these highly resolved data series covering a large part of the interior of the Greenland ice sheet.
  •  
14.
  • Röckmann, Thomas, et al. (författare)
  • In situ observations of the isotopic composition of methane at the Cabauw tall tower site
  • 2016
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:16, s. 10469-10487
  • Tidskriftsartikel (refereegranskat)abstract
    • High-precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS)-based technique for in situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands and performed in situ, high-frequency (approx. hourly) measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of (+0.25±0.04)‰ for δ13C and (-4.3±0.4)‰ for δD. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high-precision and hightemporal- resolution dataset not only reveals the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget when they are performed at multiple sites that are representative for the entire European domain.
  •  
15.
  • Steffensen, Jörgen Peder, et al. (författare)
  • High-Resolution Greenland Ice Core Data Show Abrupt Climate Change Happens in Few Years
  • 2008
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 321, s. 680-684
  • Tidskriftsartikel (refereegranskat)abstract
    • The last two abrupt warmings at the onset of our present warm interglacial period, interrupted bythe Younger Dryas cooling event, were investigated at high temporal resolution from the NorthGreenland Ice Core Project ice core. The deuterium excess, a proxy of Greenland precipitationmoisture source, switched mode within 1 to 3 years over these transitions and initiated a moregradual change (over 50 years) of the Greenland air temperature, as recorded by stable waterisotopes. The onsets of both abrupt Greenland warmings were slightly preceded by decreasingGreenland dust deposition, reflecting the wetting of Asian deserts. A northern shift of theIntertropical Convergence Zone could be the trigger of these abrupt shifts of Northern Hemisphereatmospheric circulation, resulting in changes of 2 to 4 kelvin in Greenland moisture sourcetemperature from one year to the next.
  •  
16.
  • Svensson, Anders, et al. (författare)
  • Bipolar volcanic synchronization of abrupt climate change in Greenland and Antarctic ice cores during the last glacial period
  • 2020
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 16:4, s. 1565-1580
  • Tidskriftsartikel (refereegranskat)abstract
    • The last glacial period is characterized by a number of millennial climate events that have been identified in both Greenland and Antarctic ice cores and that are abrupt in Greenland climate records. The mechanisms governing this climate variability remain a puzzle that requires a precise synchronization of ice cores from the two hemispheres to be resolved. Previously, Greenland and Antarctic ice cores have been synchronized primarily via their common records of gas concentrations or isotopes from the trapped air and via cosmogenic isotopes measured on the ice. In this work, we apply ice core volcanic proxies and annual layer counting to identify large volcanic eruptions that have left a signature in both Greenland and Antarctica. Generally, no tephra is associated with those eruptions in the ice cores, so the source of the eruptions cannot be identified. Instead, we identify and match sequences of volcanic eruptions with bipolar distribution of sulfate, i.e. unique patterns of volcanic events separated by the same number of years at the two poles. Using this approach, we pinpoint 82 large bipolar volcanic eruptions throughout the second half of the last glacial period (12-60ka). This improved ice core synchronization is applied to determine the bipolar phasing of abrupt climate change events at decadal-scale precision. In response to Greenland abrupt climatic transitions, we find a response in the Antarctic water isotope signals (δ18O and deuterium excess) that is both more immediate and more abrupt than that found with previous gas-based interpolar synchronizations, providing additional support for our volcanic framework. On average, the Antarctic bipolar seesaw climate response lags the midpoint of Greenland abrupt δ18O transitions by 122±24 years. The time difference between Antarctic signals in deuterium excess and δ18O, which likewise informs the time needed to propagate the signal as described by the theory of the bipolar seesaw but is less sensitive to synchronization errors, suggests an Antarctic δ18O lag behind Greenland of 152±37 years. These estimates are shorter than the 200 years suggested by earlier gas-based synchronizations. As before, we find variations in the timing and duration between the response at different sites and for different events suggesting an interaction of oceanic and atmospheric teleconnection patterns as well as internal climate variability.
  •  
17.
  • Traversi, Rita, et al. (författare)
  • Sulfate spikes in the deep layers of EPICA-Dome C Ice Core: Evidence of glaciological artifacts
  • 2009
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 43:23, s. 8737-8743
  • Tidskriftsartikel (refereegranskat)abstract
    • A detailed ionic component record was performed on EPICA Dome C ice core (East Antarctica) to a depth of 3190 m using Ion Chromatography and Fast Ion Chromatography (FIC). At depths greater than 2800 m, the sulfate profile shows intense, sharp spikes which are not expected due to the smoothing of sulfate peaks by diffusion processes. Moreover, these spikes show an "anomalous" chemical composition (e.g., unusually low acidity, high Mg2+ concentration and high Mg2+/Ca2+ ratio). These peaks and the surrounding layers also exhibit good Mg2+ vs SO42- and Cl- vs Na+ correlations through both glacial and interglacial periods. Furthermore, the high-resolution analysis of two horizontally contiguous ice sections showed that some fraction of the impurities are characterized by a heterogeneous distribution. Altogether, these results suggest the occurrence of long-term postdepositional processes involving a rearrangement of impurities via migration in the vein network, characterized by sulfuric acidity and leading to the formation of soluble particles of magnesium sulfate salts, along with ionic association of ions in the liquid films along boundaries. This evidence should be taken into consideration when inferring information on for rapid climatic and environmental changes from ice core chemical records at great depths. At Dome C, the depth threshold was found to be 2800 m.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy