SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fletcher Leigh) "

Sökning: WFRF:(Fletcher Leigh)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arridge, Christopher S., et al. (författare)
  • Uranus Pathfinder : exploring the origins and evolution of Ice Giant planets
  • 2012
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 753-791
  • Tidskriftsartikel (refereegranskat)abstract
    • The "Ice Giants" Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA's Cosmic Vision 2015-2025. UP was proposed to the European Space Agency's M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz-Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036-2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.
  •  
2.
  • Fletcher, Leigh N., et al. (författare)
  • Hydrogen Dimers in Giant-planet Infrared Spectra
  • 2018
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics (IOP). - 0067-0049 .- 1538-4365. ; 235:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite being one of the weakest dimers in nature, low-spectral-resolution Voyager/IRIS observations revealed the presence of (H2)2 dimers on Jupiter and Saturn in the 1980s. However, the collision-induced H2-H2 opacity databases widely used in planetary science have thus far only included free-to-free transitions and have neglected the contributions of dimers. Dimer spectra have both fine-scale structure near the S(0) and S(1) quadrupole lines (354 and 587 cm-1, respectively), and broad continuum absorption contributions up to ±50 cm-1 from the line centers. We develop a new ab initio model for the free-to-bound, bound-to-free, and bound-to-bound transitions of the hydrogen dimer for a range of temperatures (40-400 K) and para-hydrogen fractions (0.25-1.0). The model is validated against low-temperature laboratory experiments, and used to simulate the spectra of the giant planets. The new collision-induced opacity database permits high-resolution (0.5-1.0 cm-1) spectral modeling of dimer spectra near S(0) and S(1) in both Cassini Composite Infrared Spectrometer observations of Jupiter and Saturn, and in Spitzer Infrared Spectrometer (IRS) observations of Uranus and Neptune for the first time. Furthermore, the model reproduces the dimer signatures observed in Voyager/IRIS data near S(0) on Jupiter and Saturn, and generally lowers the amount of para-H2 (and the extent of disequilibrium) required to reproduce IRIS observations.
  •  
3.
  • Fletcher, Leigh N., et al. (författare)
  • Jupiter Science Enabled by ESA's Jupiter Icy Moons Explorer
  • 2023
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 219:7
  • Forskningsöversikt (refereegranskat)abstract
    • ESA's Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), visible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 & mu;m), and sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet.
  •  
4.
  • Gustafsson, Magnus, 1969-, et al. (författare)
  • A computational study of hydrogen dimers in giant-planet infrared spectra
  • 2019
  • Ingår i: 24th International Conference on Spectral Lines Shapes 17-22 June 2018, Dublin, Ireland. - : Institute of Physics (IOP).
  • Konferensbidrag (refereegranskat)abstract
    • The absorption due to H2–H2 complexes is investigated theoretically. The potential and dipole surfaces for the complex are taken from the literature. Quantum dynamical calculations of the roto-translational absorption spectrum are performed. Special attention is paid to the fine features due to hydrogen dimers, (H2)2, at the centers of the collision-induced rotational S(0) and S(1) transitions. The computed absorption coefficients are used to analyze the spectra of the four giant planets of our solar system.
  •  
5.
  • Orton, Glenn S., et al. (författare)
  • Mid-infrared spectroscopy of Uranus from the Spitzer Infrared Spectrometer : 1. Determination of the mean temperature structure of the upper troposphere and stratosphere
  • 2014
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 243, s. 494-513
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2007 December 16-17, spectra were acquired of the disk of Uranus by the Spitzer Infrared Spectrometer (IRS), ten days after the planet's equinox, when its equator was close to the sub-Earth point. This spectrum provides the highest-resolution broad-band spectrum ever obtained for Uranus from space, allowing a determination of the disk-averaged temperature and molecule composition to a greater degree of accuracy than ever before. The temperature profiles derived from the Voyager radio occultation experiment by Lindal et al. (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987]. J. Geophys. Res. 92, 14987-15001) and revisions suggested by Sromovsky et al. (Sromovsky, L.A., Fry, P.A., Kim, J.H. [2011]. Icarus 215, 292-312) that match these data best are those that assume a high abundance of methane in the deep atmosphere. However, none of these model profiles provides a satisfactory fit over the full spectral range sampled. This result could be the result of spatial differences between global and low-latitudinal regions, changes in time, missing continuum opacity sources such as stratospheric hazes or unknown tropospheric constituents, or undiagnosed systematic problems with either the Voyager radio-occultation or the Spitzer IRS data sets. The spectrum is compatible with the stratospheric temperatures derived from the Voyager ultraviolet occultations measurements by Herbert et al. (Herbert, F. et al. [1987]. J. Geophys. Res. 92, 15093-15109), but it is incompatible with the hot stratospheric temperatures derived from the same data by Stevens et al. (Stevens, M.H., Strobel, D.F., Herbert, F.H. [1993]. Icarus 101, 45-63). Thermospheric temperatures determined from the analysis of the observed H2 quadrupole emission features are colder than those derived by Herbert et al. at pressures less than ~1μbar. Extrapolation of the nominal model spectrum to far-infrared through millimeter wavelengths shows that the spectrum arising solely from H2 collision-induced absorption is too warm to reproduce observations between wavelengths of 0.8 and 3.3mm. Adding an additional absorber such as H2S provides a reasonable match to the spectrum, although a unique identification of the responsible absorber is not yet possible with available data. An immediate practical use for the spectrum resulting from this model is to establish a high-precision continuum flux model for use as an absolute radiometric standard for future astronomical observations.
  •  
6.
  • Orton, Glenn S., et al. (författare)
  • Mid-infrared spectroscopy of Uranus from the Spitzer infrared spectrometer : 2. Determination of the mean composition of the upper troposphere and stratosphere
  • 2014
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 243, s. 471-493
  • Tidskriftsartikel (refereegranskat)abstract
    • Mid-infrared spectral observations Uranus acquired with the Infrared Spectrometer (IRS) on the Spitzer Space Telescope are used to determine the abundances of C2H2, C2H6, CH3C2H, C4H2, CO2, and tentatively CH3 on Uranus at the time of the 2007 equinox. For vertically uniform eddy diffusion coefficients in the range 2200-2600cm2s-1, photochemical models that reproduce the observed methane emission also predict C2H6 profiles that compare well with emission in the 11.6-12.5μm wavelength region, where the υ9 band of C2H6 is prominent. Our nominal model with a uniform eddy diffusion coefficient Kzz=2430cm2s-1 and a CH4 tropopause mole fraction of 1.6×10-5 provides a good fit to other hydrocarbon emission features, such as those of C2H2 and C4H2, but the model profile for CH3C2H must be scaled by a factor of 0.43, suggesting that improvements are needed in the chemical reaction mechanism for C3Hx species. The nominal model is consistent with a CH3D/CH4 ratio of 3.0±0.2×10-4. From the best-fit scaling of these photochemical-model profiles, we derive column abundances above the 10-mbar level of 4.5+01.1/-0.8×1019molecule-cm-2 for CH4, 6.2±1.0×1016molecule-cm-2 for C2H2 (with a value 24% higher from a different longitudinal sampling), 3.1±0.3×1016molecule-cm-2 for C2H6, 8.6±2.6×1013molecule-cm-2 for CH3C2H, 1.8±0.3×1013molecule-cm-2 for C4H2, and 1.7±0.4×1013molecule-cm-2 for CO2 on Uranus. A model with Kzz increasing with altitude fits the observed spectrum and requires CH4 and C2H6 column abundances that are 54% and 45% higher than their respective values in the nominal model, but the other hydrocarbons and CO2 are within 14% of their values in the nominal model. Systematic uncertainties arising from errors in the temperature profile are estimated very conservatively by assuming an unrealistic "alternative" temperature profile that is nonetheless consistent with the observations; for this profile the column abundance of CH4 is over four times higher than in the nominal model, but the column abundances of the hydrocarbons and CO2 differ from their value in the nominal model by less than 22%. The CH3D/CH4 ratio is the same in both the nominal model with its uniform Kzz as in the vertically variable Kzz model, and it is 10% lower with the "alternative" temperature profile than the nominal model. There is no compelling evidence for temporal variations in global-average hydrocarbon abundances over the decade between Infrared Space Observatory and Spitzer observations, but we cannot preclude a possible large increase in the C2H2 abundance since the Voyager era. Our results have implications with respect to the influx rate of exogenic oxygen species and the production rate of stratospheric hazes on Uranus, as well as the C4H2 vapor pressure over C4H2 ice at low temperatures.
  •  
7.
  • Tinetti, G., et al. (författare)
  • A chemical survey of exoplanets with ARIEL
  • 2018
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 46:1, s. 135-209
  • Tidskriftsartikel (refereegranskat)abstract
    • Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.
  •  
8.
  • Tinetti, Giovanna, et al. (författare)
  • The science of EChO
  • 2010
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 6:S276, s. 359-370
  • Tidskriftsartikel (refereegranskat)abstract
    • The science of extra-solar planets is one of the most rapidly changing areas of astrophysics and since 1995 the number of planets known has increased by almost two orders of magnitude. A combination of ground-based surveys and dedicated space missions has resulted in 560-plus planets being detected, and over 1200 that await confirmation. NASA's Kepler mission has opened up the possibility of discovering Earth-like planets in the habitable zone around some of the 100,000 stars it is surveying during its 3 to 4-year lifetime. The new ESA's Gaia mission is expected to discover thousands of new planets around stars within 200 parsecs of the Sun. The key challenge now is moving on from discovery, important though that remains, to characterisation: what are these planets actually like, and why are they as they are In the past ten years, we have learned how to obtain the first spectra of exoplanets using transit transmission and emission spectroscopy. With the high stability of Spitzer, Hubble, and large ground-based telescopes the spectra of bright close-in massive planets can be obtained and species like water vapour, methane, carbon monoxide and dioxide have been detected. With transit science came the first tangible remote sensing of these planetary bodies and so one can start to extrapolate from what has been learnt from Solar System probes to what one might plan to learn about their faraway siblings. As we learn more about the atmospheres, surfaces and near-surfaces of these remote bodies, we will begin to build up a clearer picture of their construction, history and suitability for life. The Exoplanet Characterisation Observatory, EChO, will be the first dedicated mission to investigate the physics and chemistry of Exoplanetary Atmospheres. By characterising spectroscopically more bodies in different environments we will take detailed planetology out of the Solar System and into the Galaxy as a whole. EChO has now been selected by the European Space Agency to be assessed as one of four M3 mission candidates. © International Astronomical Union 2011.
  •  
9.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
10.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy