SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Forsby M) "

Sökning: WFRF:(Forsby M)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Forsby, A, et al. (författare)
  • Neuronal in vitro models for the estimation of acute systemic toxicity.
  • 2009
  • Ingår i: Toxicology in vitro : an international journal published in association with BIBRA. - : Elsevier BV. - 1879-3177. ; 23:8, s. 1564-1569
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of the EU funded integrated project "ACuteTox" is to develop a strategy in which general cytotoxicity, together with organ-specific endpoints and biokinetic features, are taken into consideration in the in vitro prediction of oral acute systemic toxicity. With regard to the nervous system, the effects of 23 reference chemicals were tested with approximately 50 endpoints, using a neuronal cell line, primary neuronal cell cultures, brain slices and aggregated brain cell cultures. Comparison of the in vitro neurotoxicity data with general cytotoxicity data generated in a non-neuronal cell line and with in vivo data such as acute human lethal blood concentration, revealed that GABA(A) receptor function, acetylcholine esterase activity, cell membrane potential, glucose uptake, total RNA expression and altered gene expression of NF-H, GFAP, MBP, HSP32 and caspase-3 were the best endpoints to use for further testing with 36 additional chemicals. The results of the second analysis showed that no single neuronal endpoint could give a perfect improvement in the in vitro-in vivo correlation, indicating that several specific endpoints need to be analysed and combined with biokinetic data to obtain the best correlation with in vivo acute toxicity.
  •  
3.
  • Krebs, Alice, et al. (författare)
  • The EU-ToxRisk method documentation, data processing and chemical testing pipeline for the regulatory use of new approach methods
  • 2020
  • Ingår i: Archives of Toxicology. - : Springer Science and Business Media LLC. - 0340-5761 .- 1432-0738. ; 94:7, s. 2435-2461
  • Tidskriftsartikel (refereegranskat)abstract
    • Hazard assessment, based on new approach methods (NAM), requires the use of batteries of assays, where individual tests may be contributed by different laboratories. A unified strategy for such collaborative testing is presented. It details all procedures required to allow test information to be usable for integrated hazard assessment, strategic project decisions and/or for regulatory purposes. The EU-ToxRisk project developed a strategy to provide regulatorily valid data, and exemplified this using a panel of > 20 assays (with > 50 individual endpoints), each exposed to 19 well-known test compounds (e.g. rotenone, colchicine, mercury, paracetamol, rifampicine, paraquat, taxol). Examples of strategy implementation are provided for all aspects required to ensure data validity: (i) documentation of test methods in a publicly accessible database; (ii) deposition of standard operating procedures (SOP) at the European Union DB-ALM repository; (iii) test readiness scoring accoding to defined criteria; (iv) disclosure of the pipeline for data processing; (v) link of uncertainty measures and metadata to the data; (vi) definition of test chemicals, their handling and their behavior in test media; (vii) specification of the test purpose and overall evaluation plans. Moreover, data generation was exemplified by providing results from 25 reporter assays. A complete evaluation of the entire test battery will be described elsewhere. A major learning from the retrospective analysis of this large testing project was the need for thorough definitions of the above strategy aspects, ideally in form of a study pre-registration, to allow adequate interpretation of the data and to ensure overall scientific/toxicological validity.
  •  
4.
  • Andres, M I, et al. (författare)
  • Polygodial-induced noradrenaline release in human neuroblastoma SH-SY5Y cells.
  • 1997
  • Ingår i: Toxicology in Vitro. - 0887-2333 .- 1879-3177. ; 11:5, s. 509-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Polygodial is a natural sesquiterpene which exhibits pronounced pungency and a powerful antifeedant activity. At low concentrations, which do not alter general cell membrane permeability, polygodial increases the intracellular concentration of free calcium ([Ca(2+)](i)). Sensory neurotransmission depends on noradrenaline (NA) release, and vesicular exocytosis, in turn, is dependent on an increase in [Ca(2+)](i). The nociceptive response induced by polygodial could therefore be directly linked to intracellular calcium levels. Consequently, the objective of this work was to investigate the effect of polygodial on NA release. The human neuroblastoma cell line SH-SY5Y was selected as an in vitro model for sensory neurones. Semiconfluent cells were preloaded with tritiated NA ([(3)H]NA). After 3 min exposure of polygodial to the cells, released and unreleased radioactivity were measured. Polygodial induced a significant [(3)H]NA release at concentrations between 0.1 and 0.5 mug/ml with a maximum effect at 0.2 mug/ml (40% increased release of [(3)H]NA as compared with unstimulated control cells). No polygodial-induced transmitter release was seen at 3.5 and 5 mug/ml. For comparison, carbachol (1 rim) increased [(3)H]NA release by 10% and the KCl-induced (100 mm) [(3)H]NA release increased by 8% as compared with unstimulated SH-SY5Y cells. In conclusion polygodial, at the concentrations 0.1-0.5 mug/ml (equal to 0.4-2 mum), induces NA release which is dependent on polygodial-induced increase in [Ca(2+)](i).
  •  
5.
  • Bal-Price, Anna, et al. (författare)
  • Putative adverse outcome pathways relevant to neurotoxicity
  • 2015
  • Ingår i: Critical reviews in toxicology. - : Informa UK Limited. - 1040-8444 .- 1547-6898. ; 45:1, s. 83-91
  • Forskningsöversikt (refereegranskat)abstract
    • The Adverse Outcome Pathway (AOP) framework provides a template that facilitates understanding of complex biological systems and the pathways of toxicity that result in adverse outcomes (AOs). The AOP starts with an molecular initiating event (MIE) in which a chemical interacts with a biological target(s), followed by a sequential series of KEs, which are cellular, anatomical, and/or functional changes in biological processes, that ultimately result in an AO manifest in individual organisms and populations. It has been developed as a tool for a knowledge-based safety assessment that relies on understanding mechanisms of toxicity, rather than simply observing its adverse outcome. A large number of cellular and molecular processes are known to be crucial to proper development and function of the central (CNS) and peripheral nervous systems (PNS). However, there are relatively few examples of well-documented pathways that include causally linked MIEs and KEs that result in adverse outcomes in the CNS or PNS. As a first step in applying the AOP framework to adverse health outcomes associated with exposure to exogenous neurotoxic substances, the EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) organized a workshop (March 2013, Ispra, Italy) to identify potential AOPs relevant to neurotoxic and developmental neurotoxic outcomes. Although the AOPs outlined during the workshop are not fully described, they could serve as a basis for further, more detailed AOP development and evaluation that could be useful to support human health risk assessment in a variety of ways.
  •  
6.
  • Dejongh, J, et al. (författare)
  • An Integrated Approach to the Prediction of Systemic Toxicity using Computer-based Biokinetic Models and Biological In vitro Test Methods : Overview of a Prevalidation Study Based on the ECITTS Project.
  • 1999
  • Ingår i: Toxicology in Vitro. - 0887-2333 .- 1879-3177. ; 13:4-5, s. 549-54
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical toxicity was estimated by integrating in vitro study results with physiologically-based biokinetic models for eight neurotoxic compounds (benzene, toluene, lindane, acrylamide, parathion/oxon, caffeine, diazepam and phenytoin). In vitro studies on general and specific neurotoxicity were performed and biotransformation and tissue-blood distribution studies were used in modelling the biokinetic behaviour of the compounds. Subsequently, neurotoxicity was estimated from the integrated in vitro and kinetic studies. These results were compared with in vivo data from the literature on minimal neurotoxicity for these compounds, such as lowest-observed-effect levels (LOELs). The discrepancy between estimated and experimental LOELs ranged from 2- to 10-fold. LOEL estimates for compounds with a relatively low toxicity were more accurate than for compounds with a relatively high toxicity. LOELs for the most active compounds could only be established after consideration of additional in vitro results from the literature. The present study has generated encouraging results on the risk assessment of chemicals from in vitro studies and computer simulations and has identified some key directions for future research.
  •  
7.
  • DeJongh, J, et al. (författare)
  • Estimation of systemic toxicity of acrylamide by integration of in vitro toxicity data with kinetic simulations.
  • 1999
  • Ingår i: Toxicology and Applied Pharmacology. - : Elsevier BV. - 0041-008X .- 1096-0333. ; 158:3, s. 261-268
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurodegenerative properties of acrylamide were studied in vitro by exposure of differentiated SH-SY5Y human neuroblastoma cells for 72 h. The number of neurites per cell and the total cellular protein content were determined every 24 h throughout the exposure and the subsequent 96-h recovery period. Using kinetic data on the metabolism of acrylamide in rat, a biokinetic model was constructed in which the in vitro toxicity data were integrated. Using this model, we estimated the acute and subchronic toxicity of acrylamide for the rat in vivo. These estimations were compared to experimentally derived lowest observed effect doses (LOEDs) for daily intraperitoneal exposure (1, 10, 30, and 90 days) to acrylamide. The estimated LOEDs differed maximally twofold from the experimental LOEDs, and the nonlinear response to acrylamide exposure over time was simulated correctly. It is concluded that the integration of the present in vitro toxicity data with kinetic data gives adequate estimates of acute and subchronic neurotoxicity resulting from acrylamide exposure.
  •  
8.
  • Delp, Johannes, et al. (författare)
  • Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors
  • 2021
  • Ingår i: Archives of Toxicology. - : Springer. - 0340-5761 .- 1432-0738. ; 95:2, s. 591-615
  • Tidskriftsartikel (refereegranskat)abstract
    • Inhibition of complex I of the mitochondrial respiratory chain (cI) by rotenone and methyl-phenylpyridinium (MPP +) leads to the degeneration of dopaminergic neurons in man and rodents. To formally describe this mechanism of toxicity, an adverse outcome pathway (AOP:3) has been developed that implies that any inhibitor of cI, or possibly of other parts of the respiratory chain, would have the potential to trigger parkinsonian motor deficits. We used here 21 pesticides, all of which are described in the literature as mitochondrial inhibitors, to study the general applicability of AOP:3 or of in vitro assays that are assessing its activation. Five cI, three complex II (cII), and five complex III (cIII) inhibitors were characterized in detail in human dopaminergic neuronal cell cultures. The NeuriTox assay, examining neurite damage in LUHMES cells, was used as in vitro proxy of the adverse outcome (AO), i.e., of dopaminergic neurodegeneration. This test provided data on whether test compounds were unspecific cytotoxicants or specifically neurotoxic, and it yielded potency data with respect to neurite degeneration. The pesticide panel was also examined in assays for the sequential key events (KE) leading to the AO, i.e., mitochondrial respiratory chain inhibition, mitochondrial dysfunction, and disturbed proteostasis. Data from KE assays were compared to the NeuriTox data (AO). The cII-inhibitory pesticides tested here did not appear to trigger the AOP:3 at all. Some of the cI/cIII inhibitors showed a consistent AOP activation response in all assays, while others did not. In general, there was a clear hierarchy of assay sensitivity: changes of gene expression (biomarker of neuronal stress) correlated well with NeuriTox data; mitochondrial failure (measured both by a mitochondrial membrane potential-sensitive dye and a respirometric assay) was about 10-260 times more sensitive than neurite damage (AO); cI/cIII activity was sometimes affected at > 1000 times lower concentrations than the neurites. These data suggest that the use of AOP:3 for hazard assessment has a number of caveats: (i) specific parkinsonian neurodegeneration cannot be easily predicted from assays of mitochondrial dysfunction; (ii) deriving a point-of-departure for risk assessment from early KE assays may overestimate toxicant potency.
  •  
9.
  •  
10.
  • Hinojosa, Maria G., et al. (författare)
  • Effects of cylindrospermopsin, chlorpyrifos and their combination in a SH-SY5Y cell model concerning developmental neurotoxicity
  • 2024
  • Ingår i: Ecotoxicology and Environmental Safety. - 0147-6513 .- 1090-2414. ; 269
  • Tidskriftsartikel (refereegranskat)abstract
    • The cyanotoxin cylindrospermopsin (CYN) has been postulated to cause neurotoxicity, although the studies in this concern are very few. In addition, some studies in vitro indicate its possible effects on development. Furthermore, pesticides can be present in the same environmental samples as cyanotoxins. Therefore, chlor-pyrifos (CPF) has been one of the most common pesticides used worldwide. The aim of this report was to study the effects of CYN, isolated and in combination with CPF, in a developmental neurotoxicity in vitro model. The human neuroblastoma SH-SY5Y cell line was exposed during 6 days of differentiation to both toxics to study their effects on cell viability and neurite outgrowth. To further evaluate effects of both toxicants on cholinergic signaling, their agonistic and antagonistic activities on the alpha 7 homomeric nicotinic acetylcholine receptor (nAChR) were studied upon acute exposure. Moreover, a transcriptomic analysis by qPCR was performed after 6 days of CYN-exposure during differentiation. The results showed a concentration-dependent decrease on both cell viability and neurite outgrowth for both toxics isolated, leading to effective concentration 20 (EC20) values of 0.35 mu M and 0.097 mu M for CYN on cell viability and neurite outgrowth, respectively, and 100 mu M and 58 mu M for CPF, while the combination demonstrated no significant variations. In addition, 95 mu M and 285 mu M CPF demonstrated to act as an antagonist to nicotine on the nAChR, although CYN up to 2.4 mu M had no effect on the efficacy of these receptors. Additionally, the EC20 for CYN (0.097 mu M) on neurite outgrowth downregulated expression of the 5 genes NTNG2 (netrin G2), KCNJ11 (potassium channel), SLC18A3 (vesicular acetylcholine transporter), APOE (apolipoprotein E), and SEMA6B (semaphorin 6B), that are all important for neuronal development. Thus, this study points out the importance of studying the effects of CYN in terms of neurotoxicity and developmental neurotoxicity.
  •  
11.
  • Hinojosa, M. G., et al. (författare)
  • Evaluation of mRNA markers in differentiating human SH-SY5Y cells for estimation of developmental neurotoxicity
  • 2023
  • Ingår i: Neurotoxicology. - : Elsevier. - 0161-813X .- 1872-9711. ; 97, s. 65-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Current guidelines for developmental neurotoxicity (DNT) evaluation are based on animal models. These have limitations so more relevant, efficient and robust approaches for DNT assessment are needed. We have used the human SH-SY5Y neuroblastoma cell model to evaluate a panel of 93 mRNA markers that are frequent in Neuronal diseases and functional annotations and also differentially expressed during retinoic acid-induced differentiation in the cell model. Rotenone, valproic acid (VPA), acrylamide (ACR) and methylmercury chlo-ride (MeHg) were used as DNT positive compounds. Tolbutamide, D-mannitol and clofibrate were used as DNT negative compounds. To determine concentrations for exposure for gene expression analysis, we developed a pipeline for neurite outgrowth assessment by live-cell imaging. In addition, cell viability was measured by the resazurin assay. Gene expression was analyzed by RT-qPCR after 6 days of exposure during differentiation to concentrations of the DNT positive compounds that affected neurite outgrowth, but with no or minimal effect on cell viability. Methylmercury affected cell viability at lower concentrations than neurite outgrowth, hence the cells were exposed with the highest non-cytotoxic concentration. Rotenone (7.3 nM) induced 32 differentially expressed genes (DEGs), ACR (70 mu M) 8 DEGs, and VPA (75 mu M) 16 DEGs. No individual genes were significantly dysregulated by all 3 DNT positive compounds (p < 0.05), but 9 genes were differentially expressed by 2 of them. Methylmercury (0.8 nM) was used to validate the 9 DEGs. The expression of SEMA5A (encoding semaphorin 5A) and CHRNA7 (encoding nicotinic acetylcholine receptor subunit alpha 7) was downregulated by all 4 DNT positive compounds. None of the DNT negative compounds dysregulated any of the 9 DEGs in common for the DNT positive compounds. We suggest that SEMA5A or CHRNA7 should be further evaluated as biomarkers for DNT studies in vitro since they also are involved in neurodevelopmental adverse outcomes in humans.
  •  
12.
  • Nordin-Andersson, M, et al. (författare)
  • Acrylamide-induced effects on general and neurospecific cellular functions during exposure and recovery.
  • 2003
  • Ingår i: Cell Biology and Toxicology. - 0742-2091 .- 1573-6822. ; 19:1, s. 43-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Basal cytotoxicity, morphological changes and alterations in cell physiological and neurochemical functions were studied in differentiated human neuroblastoma (SH-SY5Y) cells during exposure to acrylamide and during a subsequent recovery period after cessation of exposure. Acrylamide induced a 20% reduction in the number of neurites per cell at 0.21 mmol/L and 20% decrease in the protein synthesis rate at 0.17 mmol/L after 72 h of exposure. Furthermore, the basal level of intracellular calcium concentration ([Ca2+]i) and receptor-activated (carbachol, 0.1 mmol/L) Ca2+ fluxes increased by 49% and 21%, respectively, at 0.25 mmol/L. These observations were made at noncytotoxic acrylamide concentrations, signifying specific neurotoxic alterations. Forty-eight hours after cessation of acrylamide exposure, the SH-SY5Y cells had recovered, i.e., the number of neurites per cell as well as the basal level of [Ca2+]i and rate of protein synthesis were comparable to those of control cells. The general calpain inhibitor calpeptin decreased the acrylamide-induced (0.5 mmol/L) neurite degeneration, determined as reduction in number of neurites per cell, from 52% to 17% as compared to control cells, which further supports the hypothesis that an increased [Ca2+]i plays a significant role for acrylamide-induced axonopathy.
  •  
13.
  • Nordin-Andersson, M, et al. (författare)
  • Neurite degeneration in differentiated human neuroblastoma cells.
  • 1998
  • Ingår i: Toxicology in Vitro. - 0887-2333 .- 1879-3177. ; 12:5, s. 557-60
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied neurite degeneration in differentiated human neuroblastoma (SH-SY5Y) cells. The axonopathy-inducing potency in vitro of caffeine, diazepam, methylmercury chloride (MeHg), triethyltin chloride (TET) and acrylamide (ACR) was elucidated. After 72 hours of exposure the neurite degeneration was determined (by morphological quantification) as well as the total protein content (general cytotoxicity). The concentrations that caused 20% reduction of number of neurites (ND(20)) for ACR (250+/-36 mum) and TET (0.097+/-0.03 mum) was significantly lower, 63% and 35%, respectively (P
  •  
14.
  • Scheers, Ellen M, et al. (författare)
  • Cytotoxicity of amino alcohols to rat hepatoma-derived Fa32 cells.
  • 2002
  • Ingår i: ATLA (Alternatives to Laboratory Animals). - 0261-1929. ; 30:3, s. 309-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Amino alcohols are used as emulsifying agents in dry-cleaning soaps, wax removers, cosmetics, paints and insecticides. The cytotoxicities of 12 amino alcohols, which differed in chain length, position of the amino and alcohol groups, and the presence of an additional phenyl group, were determined by the neutral red uptake inhibition assay with normally cultured, glutathione-depleted or antioxidant-enriched Fa32 rat hepatoma-derived cells. Glutathione depletion and antioxidant enrichment were achieved by including 50(M L-buthionine-S,R-sulphoximine (BSO) or 100(M (-tocopherol acetate (vitamin E) in the culture medium for 24 hours before and during the assay. The cytotoxicity of the amino alcohols observed after treatment for 24 hours was expressed as the concentration of compound needed to induce a 50% reduction in neutral red uptake (NI50). The observed NI50 values ranged from 3mM to 30mM. The individual stereoisomers and a racemic mixture of 1-amino-2-propanol exhibited similar cytotoxicities (with normally cultured Fa32 cells, and vitamin E- and BSO-treated cultures). Similar NI50 values for D-(+)-2-amino-1-propanol, 3-amino-1-propanol and the L-, D- or DL- forms of 1-amino-2-propanol, indicated that the position of the amino group had little influence on the cytotoxicities of the amino alcohols. In contrast, the position of the hydroxyl group appeared to play an important role for the toxicity of the compound, as indicated by the significantly different NI50 values for 4-amino-1-butanol and 4-amino-2-butanol. An additional phenyl group greatly increased the cytotoxicity of 2-amino-1,3-propanediol. For most of the compounds, cytotoxicity increased when GSH was depleted, and decreased when the cells were enriched with vitamin E. This indicated that most of the tested chemicals interact with GSH, either directly or indirectly, by processes which generate oxygen free-radicals. Decreased toxicity was found for most of the chemicals administered to vitamin E-enriched cells, indicating that reactive oxygen species could be involved in the toxicity of the amino alcohols.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy