SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fuglesang Christer 1957 ) "

Search: WFRF:(Fuglesang Christer 1957 )

  • Result 1-25 of 58
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abdellaoui, G., et al. (author)
  • An overview of the JEM-EUSO program and results
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • The field of UHECRs (Ultra-High energy cosmic Rays) and the understanding of particle acceleration in the cosmos, as a key ingredient to the behaviour of the most powerful sources in the universe, is of outmost importance for astroparticle physics as well as for fundamental physics and will improve our general understanding of the universe. The current main goals are to identify sources of UHECRs and their composition. For this, increased statistics is required. A space-based detector for UHECR research has the advantage of a very large exposure and a uniform coverage of the celestial sphere. The aim of the JEM-EUSO program [1] is to bring the study of UHECRs to space. The principle of observation is based on the detection of UV light emitted by isotropic fluorescence of atmospheric nitrogen excited by the Extensive Air Showers (EAS) in the Earth's atmosphere and forward-beamed Cherenkov radiation reflected from the Earth's surface or dense cloud tops. In addition to the prime objective of UHECR studies, JEM-EUSO will do several secondary studies due to the instruments' unique capacity of detecting very weak UV-signals with extreme time-resolution around 1 μs: meteors, Transient Luminous Events (TLE), bioluminescence, maps of human generated UV-light, searches for Strange Quark Matter (SQM) and high-energy neutrinos, and more. The JEM-EUSO program includes several missions from ground (EUSO-TA [2]), from stratospheric balloons (EUSO-Balloon [3], EUSO-SPB1 [4], EUSO-SPB2 [5]), and from space (TUS [6], Mini-EUSO [7]) employing fluorescence detectors to demonstrate the UHECR observation from space and prepare the large size missions K-EUSO [8] and POEMMA [9]. A review of the current status of the program, the key results obtained so far by the different projects, and the perspectives for the near future are presented.
  •  
2.
  • Abdellaoui, G., et al. (author)
  • Cosmic ray oriented performance studies for the JEM-EUSO first level trigger
  • 2017
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier. - 0168-9002 .- 1872-9576. ; , s. 150-163
  • Journal article (peer-reviewed)abstract
    • JEM-EUSO is a space mission designed to investigate Ultra-High Energy Cosmic Rays and Neutrinos (E > 5.10(19) eV) from the International Space Station (ISS). Looking down from above its wide angle telescope is able to observe their air showers and collect such data from a very wide area. Highly specific trigger algorithms are needed to drastically reduce the data load in the presence of both atmospheric and human activity related background light, yet retain the rare cosmic ray events recorded in the telescope. We report the performance in offline testing of the first level trigger algorithm on data from JEM-EUSO prototypes and laboratory measurements observing different light sources: data taken during a high altitude balloon flight over Canada, laser pulses observed from the ground traversing the real atmosphere, and model landscapes reproducing realistic aspect ratios and light conditions as would be seen from the ISS itself. The first level trigger logic successfully kept the trigger rate within the permissible bounds when challenged with artificially produced as well as naturally encountered night sky background fluctuations and while retaining events with general air-shower characteristics.
  •  
3.
  • Abdellaoui, G., et al. (author)
  • EUSO-SPB1 mission and science
  • 2024
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 154, s. 102891-
  • Journal article (peer-reviewed)abstract
    • The Extreme Universe Space Observatory on a Super Pressure Balloon 1 (EUSO-SPB1) was launched in 2017 April from Wanaka, New Zealand. The plan of this mission of opportunity on a NASA super pressure balloon test flight was to circle the southern hemisphere. The primary scientific goal was to make the first observations of ultra-high-energy cosmic-ray extensive air showers (EASs) by looking down on the atmosphere with an ultraviolet (UV) fluorescence telescope from suborbital altitude (33 km). After 12 days and 4 h aloft, the flight was terminated prematurely in the Pacific Ocean. Before the flight, the instrument was tested extensively in the West Desert of Utah, USA, with UV point sources and lasers. The test results indicated that the instrument had sensitivity to EASs of ⪆3 EeV. Simulations of the telescope system, telescope on time, and realized flight trajectory predicted an observation of about 1 event assuming clear sky conditions. The effects of high clouds were estimated to reduce this value by approximately a factor of 2. A manual search and a machine-learning-based search did not find any EAS signals in these data. Here we review the EUSO-SPB1 instrument and flight and the EAS search.
  •  
4.
  • Abdellaoui, G., et al. (author)
  • EUSO-TA - First results from a ground-based EUSO telescope
  • 2018
  • In: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 102, s. 98-111
  • Journal article (peer-reviewed)abstract
    • EUSO-TA is a ground-based telescope, installed at the Telescope Array (TA) site in Black Rock Mesa, Utah, USA. This is the first detector to successfully use a Fresnel lens based optical system and multi-anode photomultipliers (64 channels per tube, 2304 channels encompassing a 10.6° × 10.6° field of view) for detection of Ultra High Energy Cosmic Rays (UHECR). The telescope is located in front of one of the fluorescence detectors of the TA experiment. Since its installation in 2013, the detector has observed several ultra-high energy cosmic ray events and, in addition, meteors. The limiting magnitude of 5.5 on summed frames (∼ 3 ms) has been established. Measurements of the UV night sky emission in different conditions and moon phases and positions have been completed. The performed observations serve as a proof of concept for the future application of this detector technology.
  •  
5.
  • Abdellaoui, G., et al. (author)
  • First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere
  • 2018
  • In: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 13
  • Journal article (peer-reviewed)abstract
    • EUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of the 25(th) of August 2014 from Timmins, Canada. The flight ended successfully after maintaining the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour underflight using a helicopter equipped with three UV light sources (LED, xenon flasher and laser) to perform an inflight calibration and examine the detectors capability to measure tracks moving at the speed of light. We describe the helicopter laser system and details of the underflight as well as how the laser tracks were recorded and found in the data. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. Finally, we present a first reconstruction of the direction of the laser tracks relative to the detector.
  •  
6.
  • Abdellaoui, G., et al. (author)
  • Science and mission status of EUSO-SPB2
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • The Extreme Universe Space Observatory on a Super Pressure Balloon II (EUSO-SPB2) is a second generation stratospheric balloon instrument for the detection of Ultra High Energy Cosmic Rays (UHECRs, E > 1 EeV) via the fluorescence technique and of Very High Energy (VHE, E > 10 PeV) neutrinos via Cherenkov emission. EUSO-SPB2 is a pathfinder mission for instruments like the proposed Probe Of Extreme Multi-Messenger Astrophysics (POEMMA). The purpose of such a space-based observatory is to measure UHECRs and UHE neutrinos with high statistics and uniform exposure. EUSO-SPB2 is designed with two Schmidt telescopes, each optimized for their respective observational goals. The Fluorescence Telescope looks at the nadir to measure the fluorescence emission from UHECR-induced extensive air shower (EAS), while the Cherenkov Telescope is optimized for fast signals (∼10 ns) and points near the Earth's limb. This allows for the measurement of Cherenkov light from EAS caused by Earth skimming VHE neutrinos if pointed slightly below the limb or from UHECRs if observing slightly above. The expected launch date of EUSO-SPB2 is Spring 2023 from Wanaka, NZ with target duration of up to 100 days. Such a flight would provide thousands of VHECR Cherenkov signals in addition to tens of UHECR fluorescence tracks. Neither of these kinds of events have been observed from either orbital or suborbital altitudes before, making EUSO-SPB2 crucial to move forward towards a space-based instrument. It will also enhance the understanding of potential background signals for both detection techniques. This contribution will provide a short overview of the detector and the current status of the mission as well as its scientific goals.
  •  
7.
  • Abdellaoui, G., et al. (author)
  • Towards observations of nuclearites in Mini-EUSO
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • Mini-EUSO is a small orbital telescope with a field of view of 44◦ × 44◦, observing the night-time Earth mostly in 320-420 nm band. Its time resolution spanning from microseconds (triggered) to milliseconds (untriggered) and more than 300 × 300 km of the ground covered, already allowed it to register thousands of meteors. Such detections make the telescope a suitable tool in the search for hypothetical heavy compact objects, which would leave trails of light in the atmosphere due to their high density and speed. The most prominent example are the nuclearites – hypothetical lumps of strange quark matter that could be stabler and denser than the nuclear matter. In this paper, we show potential limits on the flux of nuclearites after collecting 42 hours of observations data.
  •  
8.
  • Abdellaoui, G., et al. (author)
  • Ultra-violet imaging of the night-time earth by EUSO-Balloon towards space-based ultra-high energy cosmic ray observations
  • 2019
  • In: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 111, s. 54-71
  • Journal article (peer-reviewed)abstract
    • The JEM-EUSO (Joint Experiment Missions for the Extreme Universe Space Observatory) program aims at developing Ultra-Violet (UV) fluorescence telescopes for efficient detections of Extensive Air Showers (EASs) induced by Ultra-High Energy Cosmic Rays (UHECRs) from satellite orbit. In order to demonstrate key technologies for JEM-EUSO, we constructed the EUSO-Balloon instrument that consists of a similar to 1 m(2) refractive telescope with two Fresnel lenses and an array of multi-anode photo-multiplier tubes at the focus. Distinguishing it from the former balloon-borne experiments, EUSO-Balloon has the capabilities of single photon counting with a gate time of 2.3 mu s and of imaging with a total of 2304 pixels. As a pathfinder mission, the instrument was launched for an 8 h stratospheric flight on a moonless night in August 2014 over Timmins, Canada. In this work, we analyze the count rates over similar to 2.5 h intervals. The measurements are of diffuse light, e.g. of airglow emission, back-scattered from the Earth's atmosphere as well as artificial light sources. Count rates from such diffuse light are a background for EAS detections in future missions and relevant factor for the analysis of EAS events. We also obtain the geographical distribution of the count rates over a similar to 780 km(2) area along the balloon trajectory. In developed areas, light sources such as the airport, mines, and factories are clearly identified. This demonstrates the correct location of signals that will be required for the EAS analysis in future missions. Although a precise determination of count rates is relevant for the existing instruments, the absolute intensity of diffuse light is deduced for the limited conditions by assuming spectra models and considering simulations of the instrument response. Based on the study of diffuse light by EUSO-Balloon, we also discuss the implications for coming pathfinders and future space-based UHECR observation missions.
  •  
9.
  • Abe, S., et al. (author)
  • Developments and results in the context of the JEM-EUSO program obtained with the ESAF simulation and analysis framework
  • 2023
  • In: European Physical Journal C. - : Springer Nature. - 1434-6044 .- 1434-6052. ; 83:11
  • Journal article (peer-reviewed)abstract
    • JEM-EUSO is an international program for the development of space-based Ultra-High Energy Cosmic Ray observatories. The program consists of a series of missions which are either under development or in the data analysis phase. All instruments are based on a wide-field-of-view telescope, which operates in the near-UV range, designed to detect the fluorescence light emitted by extensive air showers in the atmosphere. We describe the simulation software ESAF in the framework of the JEM-EUSO program and explain the physical assumptions used. We present here the implementation of the JEM-EUSO, POEMMA, K-EUSO, TUS, Mini-EUSO, EUSO-SPB1 and EUSO-TA configurations in ESAF. For the first time ESAF simulation outputs are compared with experimental data.
  •  
10.
  • Bacholle, S., et al. (author)
  • Mini-EUSO Mission to Study Earth UV Emissions on board the ISS
  • 2021
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 253:2
  • Journal article (peer-reviewed)abstract
    • Mini-EUSO is a telescope observing the Earth in the ultraviolet band from the International Space Station. It is a part of the JEM-EUSO program, paving the way to future larger missions, such as K-EUSO and POEMMA, devoted primarily to the observation of ultrahigh-energy cosmic rays from space. Mini-EUSO is capable of observing extensive air showers generated by ultrahigh-energy cosmic rays with an energy above 10(21) eV and to detect artificial showers generated with lasers from the ground. Other main scientific objectives of the mission are the search for nuclearites and strange quark matter, the study of atmospheric phenomena such as transient luminous events, meteors, and meteoroids, the observation of sea bioluminescence and of artificial satellites and man-made space debris. Mini-EUSO will map the nighttime Earth in the UV range (290-430 nm), with a spatial resolution of about 6.3 km and a temporal resolution of 2.5 mu s, through a nadir-facing UV-transparent window in the Russian Zvezda module. The instrument, launched on 2019 August 22, from the Baikonur Cosmodrome, is based on an optical system employing two Fresnel lenses and a focal surface composed of 36 multianode photomultiplier tubes, 64 channels each, for a total of 2304 channels with single-photon counting sensitivity and an overall field of view of 44 degrees. Mini-EUSO also contains two ancillary cameras to complement measurements in the near-infrared and visible ranges. In this paper, we describe the detector and present the various phenomena observed in the first months of operations.
  •  
11.
  • Bagheri, Mahdi, et al. (author)
  • Overview of Cherenkov Telescope on-board EUSO-SPB2 for the Detection of Very-High-Energy Neutrinos
  • 2022
  • In: Proceedings of Science. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • We present the status of the development of a Cherenkov telescope to be flown on a long-duration balloon flight, the Extreme Universe Space Observatory Super Pressure Balloon 2 (EUSO-SPB2). EUSO-SPB2 is an approved NASA balloon mission that is planned to fly in 2023 and is a precursor of the Probe of Extreme Multi-Messenger Astrophysics (POEMMA), a candidate for an Astrophysics probe-class mission. The purpose of the Cherenkov telescope on-board EUSOSPB2 is to classify known and unknown sources of backgrounds for future space-based neutrino detectors. Furthermore, we will use the Earth-skimming technique to search for Very-High-Energy (VHE) tau neutrinos below the limb (E > 10 PeV) and observe air showers from cosmic rays above the limb. The 0.785 m2 Cherenkov telescope is equipped with a 512-pixel SiPM camera covering a 12.8° x 6.4° (Horizontal × Vertical) field of view. The camera signals are digitized with a 100 MS/s readout system. In this paper, we discuss the status of the telescope development, the camera integration, and simulation studies of the camera response.
  •  
12.
  • Battisti, M., et al. (author)
  • Onboard performance of the level 1 trigger of the mini-EUSO telescope
  • 2022
  • In: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 70:9, s. 2750-2766
  • Journal article (peer-reviewed)abstract
    • The Mini-EUSO telescope was launched for the International Space Station on August 22nd, 2019 to observe from the ISS orbit (-400 km altitude) various phenomena occurring in the Earth's atmosphere through a UV-transparent window located in the Russian Zvezda Module. Mini-EUSO is based on a set of two Fresnel lenses of 25 cm diameter each and a focal plane of 48x48 pixels, for a total field of view of 44 degrees. Until July 2021, Mini-EUSO performed a total of 41 data acquisition sessions, obtaining UV images of the Earth in the 290 nm - 430 nm band with temporal and spatial resolution on ground of 2.5 ls and 6.3x6.3 km2, respectively. The data acquisition was performed with a 2.5 ls sampling rate, using a dedicated trigger looking for signals with a typical duration of tens of ls.In the present paper the analysis of the performance of the 2.5 ls trigger logic is presented, with a focus on the method used for the analysis and the categories of triggered events. The expected functioning of the trigger logic has been confirmed, with the trigger rate on spurious events that remains within the requirements in nominal background conditions. The trigger logic detected several different phe-nomena, including lightning strikes, elves, ground-based flashers and events with EAS-like characteristics.
  •  
13.
  • Battisti, M., et al. (author)
  • Overview of the Mini-EUSO μs trigger logic performance
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • Mini-EUSO is the first detector of the JEM-EUSO program deployed on the ISS. It is a wide field of view telescope currently operating from a nadir-facing UV-transparent window on the ISS. It is based on an array of MAPMTs working in photon counting mode with a 2.5 μs time resolution. Among the different scientific objectives it searches for light signals with time duration compatible to those expected from Extensive Air Showers (EAS) generated by EECRs interacting in the atmosphere. Although the energy threshold for cosmic ray showers is above E > 1021eV, due the constraints given by the size of the UV-transparent window, the dedicated trigger logic has been capable of the detection of other interesting classes of events, like elves and ground flashers. An overview of the general performance of the trigger system is provided, with a particular focus on the identification of classes of events responsible for the triggers.
  •  
14.
  •  
15.
  • Bertaina, Mario Edoardo, et al. (author)
  • Implications of Mini-EUSO measurements for a space-based observation of UHECRs
  • 2023
  • In: Proceedings 6th International Symposium on Ultra High Energy Cosmic Rays (UHECR). - : EDP Sciences.
  • Conference paper (peer-reviewed)abstract
    • Mini-EUSO is the first mission of the JEM-EUSO program on board the International Space Station. It was launched in 2019 and it is currently located in the Russian section (Zvezda module) of the station and viewing our planet from a nadir-facing UV-transparent window. The instrument is based on the concept of the original JEM-EUSO mission and consists of an optical system employing two Fresnel lenses and a focal surface composed of 36 Multi-Anode Photomultiplier tubes, 64 channels each, for a total of 2304 channels with single photon counting sensitivity and an overall field of view of 44 degrees x 44 degrees. Mini-EUSO can map the night-time Earth in the near UV range (predominantly between 290 nm and 430 nm), with a spatial resolution of about 6.3 km and different temporal resolutions of 2.5 mu, 320 mu s and 41 ms. Mini-EUSO observations are extremely important to better assess the potential of a space-based detector in studying Ultra-High Energy Cosmic Rays (UHECRs) such as K-EUSO and POEMMA. In this contribution we focus the attention on UV measurements, the observation of clouds and of certain categories of events that Mini-EUSO triggers with the shortest temporal resolution. We place them in the context of UHECR observations from space, namely the estimation of exposure and sensitivity to Extensive Air Showers.
  •  
16.
  • Bertaina, M., et al. (author)
  • The Mini-EUSO telescope on board the International Space Station: first results in view of UHECR measurements from space
  • 2023
  • In: 27th European Cosmic Ray Symposium, ECRS 2022. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • Mini-EUSO is a telescope launched on board the International Space Station in 2019 and currently located in the Russian section of the station and viewing our planet from a nadir-facing UV-transparent window in the Zvezda module. The instrument is based on an optical system employing two Fresnel lenses and a focal surface composed of 36 Multi-Anode Photomultiplier tubes, 64 channels each, with single photon counting sensitivity and an overall field of view of 44◦. Main scientific objectives of the mission are the search for nuclearites and Strange Quark Matter, the study of atmospheric phenomena such as Transient Luminous Events, meteors and meteoroids, and the observation of sea bioluminescence. Mini-EUSO can map the night-time Earth in the near UV range (predominantly between 290 – 430 nm), with a spatial resolution of about 6.3 km and different temporal resolutions of 2.5 μs, 320 μs and 41 ms. Mini-EUSO observations are extremely important to assess the potential of a space-based detector of Ultra-High Energy Cosmic Rays (UHECRs) such as K-EUSO and POEMMA. In this contribution we describe the detector and show preliminary results in the context of UHECR observations from space. In particular, it is shown that the typical UV nightglow background level is comparable to what was originally estimated for a space-based detector looking down to Earth. The adaptive trigger logic successfully keeps the spurious trigger rate at the designed level of ∼1 Hz in nominal conditions and in presence of quasi-static bright sources such as city lights. The logic triggers on UV transients in the μs time scale due to anthropogenic light sources, such as flashers. These signals can clearly be distinguished from Extensive Air Shower (EAS) events by comparing them with simulated EASs. In addition, they demonstrate the capability of a large space-based detector such as K-EUSO or POEMMA to detect UHECRs above a few times 1019 eV. The presence of clouds can be clearly recognized by the UV camera in many situations, which is helpful for the calculation of the exposure and for the determination of the atmospheric conditions in case of detection of an EAS.
  •  
17.
  • Bianciotto, Marta, et al. (author)
  • Expected performance of the K-EUSO space-based observatory
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • K-EUSO is a planned mission of the JEM-EUSO program for the study of ultra-high energy cosmic rays (UHECR) from space, to be deployed on the International Space Station. The K-EUSO observatory consists of a UV telescope with a wide field of view, which aims at the detection of fluorescence light emitted by extensive air showers (EAS) in the atmosphere. The EAS events will be sampled with a time resolution of 1-2.5 μs to reconstruct the entire shower profile with high precision. The detector consisting of ∼ 105 independent pixels will allow a spatial resolution of ∼700 m on ground. From a 400 km altitude, K-EUSO will achieve a large and full sky exposure to sample the highest energy range of the UHECR spectrum. In this contribution, we present estimates of the performance of the observatory: an estimation of the expected exposure and triggered event rate as a function of energy and the event reconstruction performance, including resolution of arrival directions and energy of UHECRs.
  •  
18.
  • Bisconti, F, et al. (author)
  • Mini-EUSO engineering model : Tests in open-sky condition
  • 2019
  • In: 36th International Cosmic Ray Conference, ICRC 2019. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • Mini-EUSO is a UV telescope that will look downwards to the Earth’s atmosphere onboard the International Space Station. With the design of the ultra-high energy cosmic ray fluorescence detectors belonging to the JEM-EUSO program, it will make the first UV map of the Earth by observing atmospheric phenomena such as transient luminous events, sprites and lightning, as well as meteors and bioluminescence from earth. Diffused light from laser shots from the ground, which mimic the fluorescence light emitted by Nitrogen molecules when extensive air showers pass through the atmosphere, can be used to verify the capability of this kind of detector to observe ultra-high energy cosmic rays. To validate the electronics and the trigger algorithms developed for Mini-EUSO, a scaled down version of the telescope with 1:9 of the original focal surface and a lens of 2.5 cm diameter has been built. Tests of the Mini-EUSO engineering model have been made in laboratory and in open sky condition. In this paper, we report results of observations of the night sky, which include the detection of stars, meteors, a planet and a rocket body reflecting the sunlight. Interesting results of the observation of city lights are also reported. 
  •  
19.
  • Bisconti, F., et al. (author)
  • Mini-EUSO engineering model : tests in open-sky condition
  • 2021
  • In: Proceedings of Science. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • Mini-EUSO is a UV telescope that will look downwards to the Earth's atmosphere onboard the International Space Station. With the design of the ultra-high energy cosmic ray fluorescence detectors belonging to the JEM-EUSO program, it will make the first UV map of the Earth by observing atmospheric phenomena such as transient luminous events, sprites and lightning, as well as meteors and bioluminescence from earth. Diffused light from laser shots from the ground, which mimic the fluorescence light emitted by Nitrogen molecules when extensive air showers pass through the atmosphere, can be used to verify the capability of this kind of detector to observe ultra-high energy cosmic rays. To validate the electronics and the trigger algorithms developed for Mini-EUSO, a scaled down version of the telescope with 1:9 of the original focal surface and a lens of 2.5 cm diameter has been built. Tests of the Mini-EUSO engineering model have been made in laboratory and in open sky condition. In this paper, we report results of observations of the night sky, which include the detection of stars, meteors, a planet and a rocket body reflecting the sunlight. Interesting results of the observation of city lights are also reported.
  •  
20.
  • Capel, Francesca, et al. (author)
  • Mini-EUSO flight software and operations on ISS
  • 2017
  • In: Proceedings of Science. - Trieste, Italy : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • The Mini-EUSO instrument is designed by the JEM-EUSO collaboration to pave the way for space-based observations of Extreme Energy Cosmic Rays (EECRs). To be placed inside the International Space Station (ISS) in early 2018, it is a small UV (300-400 nm) telescope which will observe the Earth's atmosphere with a spatial resolution of 6.11 km. Mini-EUSO is capable of detecting a wide variety of UV events such as cosmic ray signals, transient luminous events and meteors with a minimum time resolution of 2.5 μs. It will also be possible to detect space debris during twilight periods. The flight software is fully automated and takes advantage of the frequent day/night cycles of the ISS orbit and ancillary instruments with which Mini-EUSO is equipped in order to optimise the mission's scientific output. The flight operations of Mini-EUSO are presented including the data acquisition, storage and transfer, astronaut interaction and predicted instrument duty cycle. 
  •  
21.
  • Casolino, M, et al. (author)
  • Mini-EUSO experiment to study UV emission of terrestrial and astrophysical origin onboard of the International Space Station
  • 2019
  • In: 36th International Cosmic Ray Conference, ICRC 2019. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • Mini-EUSO will observe the Earth in the UV range (300 - 400 nm) offering the opportunity to study a variety of atmospheric events such as Transient Luminous Events (TLEs), meteors and marine bioluminescence. Furthermore it aims to search for Ultra High Energy Cosmic Rays (UHECR) above 1021 eV and Strange Quark Matter (SQM). The detector is expected to be launched to the International Space Station in August 2019 and look at the Earth in nadir mode from the UV-transparent window of the Zvezda module of the International Space Station. The instrument comprises a compact telescope with a large field of view (44?), based on an optical system employing two Fresnel lenses for light collection. The light is focused onto an array of 36 multi-anode photomultiplier tubes (MAPMT), for a total of 2304 pixels and the resulting signal is converted into digital, processed and stored via the electronics subsystems on-board. In addition to the main detector, Mini-EUSO contains two ancillary cameras[4] for complementary measurements in the near infrared (1500 - 1600 nm) and visible (400 - 780 nm) range and also a 8 × 8 SiPM imaging array. 
  •  
22.
  • Casolino, M., et al. (author)
  • Mini-EUSO experiment to study UV emission of terrestrial and astrophysical origin onboard of the International Space Station
  • 2021
  • In: Proceedings of Science. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • Mini-EUSO will observe the Earth in the UV range (300 - 400 nm) offering the opportunity to study a variety of atmospheric events such as Transient Luminous Events (TLEs), meteors and marine bioluminescence. Furthermore it aims to search for Ultra High Energy Cosmic Rays (UHECR) above 1021 eV and Strange Quark Matter (SQM). The detector is expected to be launched to the International Space Station in August 2019 and look at the Earth in nadir mode from the UV-transparent window of the Zvezda module of the International Space Station. The instrument comprises a compact telescope with a large field of view (44◦), based on an optical system employing two Fresnel lenses for light collection. The light is focused onto an array of 36 multi-anode photomultiplier tubes (MAPMT), for a total of 2304 pixels and the resulting signal is converted into digital, processed and stored via the electronics subsystems on-board. In addition to the main detector, Mini-EUSO contains two ancillary cameras[4] for complementary measurements in the near infrared (1500 - 1600 nm) and visible (400 - 780 nm) range and also a 8 × 8 SiPM imaging array.
  •  
23.
  • Casolino, M., et al. (author)
  • Observation of night-time emissions of the Earth in the near UV range from the International Space Station with the Mini-EUSO detector
  • 2023
  • In: Remote Sensing of Environment. - : Elsevier BV. - 0034-4257 .- 1879-0704. ; 284, s. 113336-
  • Journal article (peer-reviewed)abstract
    • Mini-EUSO (Multiwavelength Imaging New Instrument for the Extreme Universe Space Observatory) is a telescope observing the Earth from the International Space Station since 2019. The instrument employs a Fresnel-lens optical system and a focal surface composed of 36 Multi-Anode Photomultiplier tubes, 64 channels each, for a total of 2304 channels with single photon counting sensitivity. Mini-EUSO also contains two ancillary cameras to complement measurements in the near infrared and visible ranges. The scientific objectives of the mission range from the search for Extensive Air Showers (EAS) generated by Ultra-High Energy Cosmic Rays (UHECRs) with energies above 10(21) eV, the search for nuclearites and Strange Quark Matter (SQM), up to the study of atmospheric phenomena such as Transient Luminous Events (TLEs), meteors and meteoroids. Mini-EUSO can map the night-time Earth in the near UV range (predominantly between 290-430 nm) with a spatial resolution of about 6.3 km (full field of view equal to 44 degrees) and a maximum temporal resolution of 2.5 mu s, observing our planet through a nadir-facing UV-transparent window in the Russian Zvezda module. The detector saves triggered transient phenomena with a sampling rate of 2.5 mu s and 320 mu s, as well as continuous acquisition at 40.96 ms scale. In this paper we discuss the detector response and the flat-fielding and calibration procedures. Using the 40.96 ms data, we present similar or equal to 6.3 km resolution night-time Earth maps in the UV band, and report on various emissions of anthropogenic and natural origin. We measure ionospheric airglow emissions of dark moonless nights over the sea and ground, studying the effect of clouds, moonlight, and artificial (towns, boats) lights. In addition to paving the way forward for the study of long-term variations of light of natural and artificial origin, we also estimate the observation live-time of future UHECR detectors.
  •  
24.
  • Casolino, M., et al. (author)
  • The Mini-EUSO telescope on board the International Space Station : Launch and first results
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • Mini-EUSO is a telescope launched on board the International Space Station in 2019 and currently located in the Russian section of the station. Main scientific objectives of the mission are the search for nuclearites and Strange Quark Matter, the study of atmospheric phenomena such as Transient Luminous Events, meteors and meteoroids, the observation of sea bioluminescence and of artificial satellites and man-made space debris. It is also capable of observing Extensive Air Showers generated by Ultra-High Energy Cosmic Rays with an energy above 1021 eV and detect artificial showers generated with lasers from the ground. Mini-EUSO can map the night-time Earth in the UV range (290 - 430 nm), with a spatial resolution of about 6.3 km and a temporal resolution of 2.5 μs, observing our planet through a nadir-facing UV-transparent window in the Russian Zvezda module. The instrument, launched on 2019/08/22 from the Baikonur cosmodrome, is based on an optical system employing two Fresnel lenses and a focal surface composed of 36 Multi-Anode Photomultiplier tubes, 64 channels each, for a total of 2304 channels with single photon counting sensitivity and an overall field of view of 44◦. Mini-EUSO also contains two ancillary cameras to complement measurements in the near infrared and visible ranges. In this paper we describe the detector and present the various phenomena observed in the first year of operation.
  •  
25.
  • Diesing, R., et al. (author)
  • UCIRC2: EUSO-SPB2’s Infrared Cloud Monitor
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC 2021. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • The second generation of the Extreme Universe Space Observatory on a Super Pressure Balloon (EUSO-SPB2) is a balloon instrument for the detection of ultra high energy cosmic rays (UHECRs) with energies above 1 EeV and very high energy neutrinos with energies above 10 PeV. EUSOSPB2 consists of two telescopes: a fluorescence telescope pointed downward for the detection of UHECRs and a Cherenkov telescope pointed towards the limb for the detection of tau lepton-induced showers produced by up-going tau neutrinos and background signals below the limb. Clouds inside the field of view of these telescopes reduce EUSO-SPB2’s geometric aperture, in particular that of the fluorescence telescope. For this reason, cloud coverage and cloud-top altitude within the field of view of the fluorescence telescope must be monitored throughout data-taking. The University of Chicago Infrared Camera (UCIRC2) will monitor these clouds using two infrared cameras with response centered at wavelengths 10 and 12 microns. By capturing images at wavelengths spanning the cloud thermal emission peak, UCIRC2 will measure cloud color-temperatures and thus cloud-top altitudes. In this contribution, we provide an overview of UCIRC2, including an update on its construction and a discussion of the techniques used to calibrate the instrument.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 58

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view