SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fyfe Ralph) "

Sökning: WFRF:(Fyfe Ralph)

  • Resultat 1-23 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Broström, Anna, et al. (författare)
  • Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation : a review
  • 2008
  • Ingår i: Vegetation History and Archaeobotany. - : Springer Science and Business Media LLC. - 0939-6314 .- 1617-6278. ; 17:5, s. 461-478
  • Tidskriftsartikel (refereegranskat)abstract
    • Information on the spatial distribution of past vegetation on local, regional and global scales is increasingly used within climate modelling, nature conservancy and archaeology. It is possible to obtain such information from fossil pollen records in lakes and bogs using the landscape reconstruction algorithm (LRA) and its two models, REVEALS and LOVE. These models assume that reliable pollen productivity estimates (PPEs) are available for the plant taxa involved in the quantitative reconstructions of past vegetation, and that PPEs are constant through time. This paper presents and discusses the PPEs for 15 tree and 18 herb taxa obtained in nine study areas of Europe. Observed differences in PPEs between regions may be explained by methodological issues and environmental variables, of which climate and related factors such as reproduction strategies and growth forms appear to be the most important. An evaluation of the PPEs at hand so far suggests that they can be used in modelling applications and quantitative reconstructions of past vegetation, provided that consideration of past environmental variability within the region is used to inform selection of PPEs, and bearing in mind that PPEs might have changed through time as a response to climate change. Application of a range of possible PPEs will allow a better evaluation of the results.
  •  
2.
  • Fyfe, Ralph M., et al. (författare)
  • The Holocene vegetation cover of Britain and Ireland : overcoming problems of scale and discerning patterns of openness
  • 2013
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 73, s. 132-148
  • Tidskriftsartikel (refereegranskat)abstract
    • The vegetation of Europe has undergone substantial changes during the course of the Holocene epoch, resulting from range expansion of plants following climate amelioration, competition between taxa and disturbance through anthropogenic activities. Much of the detail of this pattern is understood from decades of pollen analytical work across Europe, and this understanding has been used to address questions relating to vegetation-climate feedback, biogeography and human impact. Recent advances in modelling the relationship between pollen and vegetation now make it possible to transform pollen proportions into estimates of vegetation cover at both regional and local spatial scales, using the Landscape Reconstruction Algorithm (LRA), i.e. the REVEALS (Regional Estimates of VEgetation Abundance from Large Sites) and the LOVE (Local VEgetation) models. This paper presents the compilation and analysis of 73 pollen stratigraphies from the British Isles, to assess the application of the LRA and describe the pattern of landscape/woodland openness (i.e. the cover of low herb and bushy vegetation) through the Holocene. The results show that multiple small sites can be used as an effective replacement for a single large site for the reconstruction of regional vegetation cover. The REVEALS vegetation estimates imply that the British Isles had a greater degree of landscape/woodland openness at the regional scale than areas on the European mainland. There is considerable spatial bias in the British Isles dataset towards wetland areas and uplands, which may explain higher estimates of landscape openness compared with Europe. Where multiple estimates of regional vegetation are available from within the same region inter-regional differences are greater than intra-regional differences, supporting the use of the REVEALS model to the estimation of regional vegetation from pollen data. (C) 2013 Elsevier Ltd. All rights reserved.
  •  
3.
  • Gaillard, Marie-José, et al. (författare)
  • From land cover-climate relationships at the subcontinental scale to land cover-environment relationships at the regional and local spatial scale – the contribution of pollen-based quantitative reconstructions of vegetation cover using the Landscape Reconstruction Algorithm approach
  • 2014
  • Ingår i: Towards a more accurate quantification of human-environment interactions in the past. ; , s. 25-26
  • Konferensbidrag (refereegranskat)abstract
    • The Landscape Reconstruction Algorithm (Sugita 2007a,b) includes two models, REVEALS (Regional Estimates of VEgetation Abundance from Large Sites) that estimates vegetation abundance (% cover) within an area of ca. 100 km x 100 km, and LOVE (LOcal Vegetation Estimates) that estimates vegetation abundance at the local spatial scale, i.e. within the Relevant Source Area of Pollen (RSAP sensu Sugita, 2004) that is the smallest area around the study site for which the reconstruction is valid. The RSAP is estimated by the LOVE model and varies between sites and vegetation settings; so far, it was estimated to vary between < 1 - < 10 km in most ecological settings of the Holocene in NW Europe. We used the REVEALS model and over 600 pollen records from pollen data bases and individual researchers to reconstruct land-cover in NW Europe N of the Alps for key time windows of the Holocene in order to assess model-based reconstructions of anthropogenic land-cover change (ALCC) (e.g. Kaplan et al., 2009) and model (LPJ-GUESS) simulations of past potential (climate-induced vegetation), and to study past land cover – climate interactions using a regional climate model (RCA3). We used the REVEALS model and the complete LRA approach (REVEALS + LOVE models) along with two pollen records from large lakes and three pollen records from small bogs to reconstruct the local-scale land-cover in central Småland, southern Sweden, to study the relationship between vegetation composition, fire, climate and human impact at the regional and local spatial scales with the objective to discuss biodiversity issues. Our results suggest that i) past subcontinental to regional ALCC did influence regional climate through biogeophysical processes at the landatmosphere interface (Strandberg et al., submitted), and ii) local land-cover change, both natural and anthropogenic, govern environmental changes such as fire and biodiversity (Cui et al., 2013; Cui et al., submitted).
  •  
4.
  •  
5.
  • Giesecke, Thomas, et al. (författare)
  • Towards mapping the late Quaternary vegetation change of Europe.
  • 2014
  • Ingår i: Vegetation History and Archaeobotany. - : Springer Science and Business Media LLC. - 0939-6314 .- 1617-6278. ; 23:1, s. 75-86
  • Tidskriftsartikel (refereegranskat)abstract
    • The number of well-dated pollen diagrams in Europe has increased considerably over the last 30 years and many of them have been submitted to the European Pollen Database (EPD). This allows for the construction of increasingly precise maps of Holocene vegetation change across the continent. Chronological information in the EPD has been expressed in uncalibrated radiocarbon years, and most chronologies to date are based on this time scale. Here we present new chronologies for most of the datasets stored in the EPD based on calibrated radiocarbon years. Age information associated with pollen diagrams is often derived from the pollen stratigraphy itself or from other sedimentological information. We reviewed these chronological tie points and assigned uncertainties to them. The steps taken to generate the new chronologies are described and the rationale for a new classification system for age uncertainties is introduced. The resulting chronologies are fit for most continental-scale questions. They may not provide the best age model for particular sites, but may be viewed as general purpose chronologies. Taxonomic particularities of the data stored in the EPD are explained. An example is given of how the database can be queried to select samples with appropriate age control as well as the suitable taxonomic level to answer a specific research question.
  •  
6.
  • Githumbi, Esther, et al. (författare)
  • European pollen-based REVEALS land-cover reconstructions for the Holocene : Methodology, mapping and potentials
  • 2022
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 14:4, s. 1581-1619
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative reconstructions of past land cover are necessary to determine the processes involved in climate-human-land-cover interactions. We present the first temporally continuous and most spatially extensive pollen-based land-cover reconstruction for Europe over the Holocene (last 11g€¯700g€¯calg€¯yrg€¯BP). We describe how vegetation cover has been quantified from pollen records at a 11 spatial scale using the "Regional Estimates of VEgetation Abundance from Large Sites"(REVEALS) model. REVEALS calculates estimates of past regional vegetation cover in proportions or percentages. REVEALS has been applied to 1128 pollen records across Europe and part of the eastern Mediterranean-Black Sea-Caspian corridor (30-75° N, 25° W-50° E) to reconstruct the percentage cover of 31 plant taxa assigned to 12 plant functional types (PFTs) and 3 land-cover types (LCTs). A new synthesis of relative pollen productivities (RPPs) for European plant taxa was performed for this reconstruction. It includes multiple RPP values (≥2 values) for 39 taxa and single values for 15 taxa (total of 54 taxa). To illustrate this, we present distribution maps for five taxa (Calluna vulgaris, Cerealia type (t)., Picea abies, deciduous Quercus t. and evergreen Quercus t.) and three land-cover types (open land, OL; evergreen trees, ETs; and summer-green trees, STs) for eight selected time windows. The reliability of the REVEALS reconstructions and issues related to the interpretation of the results in terms of landscape openness and human-induced vegetation change are discussed. This is followed by a review of the current use of this reconstruction and its future potential utility and development. REVEALS data quality are primarily determined by pollen count data (pollen count and sample, pollen identification, and chronology) and site type and number (lake or bog, large or small, one site vs. multiple sites) used for REVEALS analysis (for each grid cell). A large number of sites with high-quality pollen count data will produce more reliable land-cover estimates with lower standard errors compared to a low number of sites with lower-quality pollen count data. The REVEALS data presented here can be downloaded from https://doi.org/10.1594/PANGAEA.937075 (Fyfe et al., 2022).
  •  
7.
  • Githumbi, Esther, et al. (författare)
  • Holocene quantitative pollen-based vegetation reconstructions in Europe for climate modelling: LandClim II
  • 2019
  • Konferensbidrag (refereegranskat)abstract
    • Understanding land use and land cover (LULC) change through time is an important aspect when attempting to interpret human-environment interactions through time. Palaeoenvironmental techniques have been crucial in bridging this gap by providing information that has been used to estimate climate change, vegetation change, sea level change etc. through time using a variety of proxies. Producing quantitative land-cover reconstructions has been an aim and a challenge with several methods attempted during the decades. In this project, we use the REVEALS model has been tested and validated in several regions of the world.We use REVEALS-based quantitative reconstructions of vegetation change to investigate the biogeochemical and biogeophysical forcings of land-cover change on climate. In the first phase of this project, LandClim I, quantitative vegetation reconstructions were produced for Europe (Mediterranean area excluded) focusing on five time windows of the Holocene between 6ka BP and present. The results from a regional climate model showed that the impact of the reconstructed LULC between 6 ka and 0.2 ka BP via biogeophysical forcing varied geographically and seasonally. We present the REVEALS quantitative pollen-based vegetation reconstruction from the ongoing second phase of the project LandClim II “Quantification of the biogeophysical and biogeochemical forcings from anthropogenic deforestation on regional Holocene climate in Europe”. This reconstruction covers entire Europe and is transient over the Holocene with a time resolution of 500 years between 11.2 and 0.7ka BP, and 100 to 300 years from 0.7ka BP to modern time.
  •  
8.
  • Githumbi, Esther, et al. (författare)
  • Pollen-Based Maps of Past Regional Vegetation Cover in Europe Over 12 Millennia-Evaluation and Potential
  • 2022
  • Ingår i: Frontiers in Ecology and Evolution. - : Frontiers Media S.A.. - 2296-701X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Realistic and accurate reconstructions of past vegetation cover are necessary to study past environmental changes. This is important since the effects of human land-use changes (e.g. agriculture, deforestation and afforestation/reforestation) on biodiversity and climate are still under debate. Over the last decade, development, validation, and application of pollen-vegetation relationship models have made it possible to estimate plant abundance from fossil pollen data at both local and regional scales. In particular, the REVEALS model has been applied to produce datasets of past regional plant cover at 1 degrees spatial resolution at large subcontinental scales (North America, Europe, and China). However, such reconstructions are spatially discontinuous due to the discrete and irregular geographical distribution of sites (lakes and peat bogs) from which fossil pollen records have been produced. Therefore, spatial statistical models have been developed to create continuous maps of past plant cover using the REVEALS-based land cover estimates. In this paper, we present the first continuous time series of spatially complete maps of past plant cover across Europe during the Holocene (25 time windows covering the period from 11.7 k BP to present). We use a spatial-statistical model for compositional data to interpolate REVEALS-based estimates of three major land-cover types (LCTs), i.e., evergreen trees, summer-green trees and open land (grasses, herbs and low shrubs); producing spatially complete maps of the past coverage of these three LCTs. The spatial model uses four auxiliary data sets-latitude, longitude, elevation, and independent scenarios of past anthropogenic land-cover change based on per-capita land-use estimates ("standard" KK10 scenarios)-to improve model performance for areas with complex topography or few observations. We evaluate the resulting reconstructions for selected time windows using present day maps from the European Forest Institute, cross validate, and compare the results with earlier pollen-based spatially-continuous estimates for five selected time windows, i.e., 100 BP-present, 350-100 BP, 700-350 BP, 3.2-2.7 k BP, and 6.2-5.7 k BP. The evaluations suggest that the statistical model provides robust spatial reconstructions. From the maps we observe the broad change in the land-cover of Europe from dominance of naturally open land and persisting remnants of continental ice in the Early Holocene to a high fraction of forest cover in the Mid Holocene, and anthropogenic deforestation in the Late Holocene. The temporal and spatial continuity is relevant for land-use, land-cover, and climate research.
  •  
9.
  • Kaplan, Jed O., et al. (författare)
  • Constraining the Deforestation History of Europe : Evaluation of Historical Land Use Scenarios with Pollen-Based Land Cover Reconstructions
  • 2017
  • Ingår i: Land. - : MDPI. - 2073-445X. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic land cover change (ALCC) is the most important transformation of the Earth system that occurred in the preindustrial Holocene, with implications for carbon, water and sediment cycles, biodiversity and the provision of ecosystem services and regional and global climate. For example, anthropogenic deforestation in preindustrial Eurasia may have led to feedbacks to the climate system: both biogeophysical, regionally amplifying winter cold and summer warm temperatures, and biogeochemical, stabilizing atmospheric CO2 concentrations and thus influencing global climate. Quantification of these effects is difficult, however, because scenarios of anthropogenic land cover change over the Holocene vary widely, with increasing disagreement back in time. Because land cover change had such widespread ramifications for the Earth system, it is essential to assess current ALCC scenarios in light of observations and provide guidance on which models are most realistic. Here, we perform a systematic evaluation of two widely-used ALCC scenarios (KK10 and HYDE3.1) in northern and part of central Europe using an independent, pollen-based reconstruction of Holocene land cover (REVEALS). Considering that ALCC in Europe primarily resulted in deforestation, we comparemodeled land use with the cover of non-forest vegetation inferred from the pollen data. Though neither land cover change scenario matches the pollen-based reconstructions precisely, KK10 correlates well with REVEALS at the country scale, while HYDE systematically underestimates land use with increasing magnitude with time in the past. Discrepancies between modeled and reconstructed land use are caused by a number of factors, including assumptions of per-capita land use and socio-cultural factors that cannot be predicted on the basis of the characteristics of the physical environment, including dietary preferences, long-distance trade, the location of urban areas and social organization.
  •  
10.
  • Li, Furong, et al. (författare)
  • Evaluation of relative pollen productivities in temperate China for reliable pollen-based quantitative reconstructions of Holocene plant cover
  • 2023
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The Landscape Reconstruction Algorithm (LRA) is regarded as the soundest approach for quantifying taxon-specific plant cover from pollen data. The reliability of relative pollen productivity (RPP) estimates is fundamental in the accuracy of quantitative vegetation reconstruction using the LRA approach. Inconsistent RPP estimates produced by different studies can cast doubt on the reliability and applicability of quantitative vegetation reconstruction. Therefore, it is crucial that the RPP estimates are evaluated before being applied for quantitative vegetation reconstruction. We have tested two alternative approaches, namely, a leave-one-out cross-validation (LOO) method and a splitting-by-subregion strategy, using surface pollen assemblages and the REVEALS model-the first step in the LRA-to evaluate the reliability of RPPs estimates of 10 target taxa obtained in the cultural landscape of Shandong. We compared the REVEALS estimates (RVs) with observations of regional vegetation abundance (OBVs) and pollen proportions (PPs). The RVs of all taxa are generally closer to OBVs than PPs, and the degree of similarity depends strongly on the abundance of individual taxa in plant and pollen; taxa dominant in the region show the highest similarity between RVs and OBVs, such as Artemisia, Poaceae, and Humulus. The RVs of all herb taxa except Humulus and Asteraceae SF Cichorioideae are slightly overrepresented, and the RVs of all tree taxa are underrepresented except for Castanea. The comparison of RVs with OBVs collected from different spatial extents shows that the RVs of all herb taxa are more similar to OBVs collected from shorter distances (100 km and 75 km for the entire region and the subregion, respectively), whereas the RVs of all tree taxa are more similar to OBVs collected from longer distances (150 km and 100 km for the entire region and the subregion, respectively). Furthermore, our findings highlight the importance to test different sizes of area for vegetation surveys for evaluation of the RVs given that the appropriate size of vegetation survey may vary between low pollen producers (mainly herbs) and high pollen producers (mainly trees). We consider that the LOO strategy is the best approach in this case study for evaluating the RPP estimates from surface moss polsters. The evaluation confirms the reliability of the obtained RPP estimates for their potential application in quantitative reconstruction of vegetation abundance in temperate China.
  •  
11.
  • Marquer, Laurent, et al. (författare)
  • Holocene changes in vegetation composition in northern Europe: why quantitative pollen-based vegetation reconstructions matter
  • 2014
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 90, s. 199-216
  • Tidskriftsartikel (refereegranskat)abstract
    • We present pollen-based reconstructions of the spatio-temporal dynamics of northern European regional vegetation abundance through the Holocene. We apply the Regional Estimates of VEgetation Abundance from Large Sites (REVEALS) model using fossil pollen records from eighteen sites within five modern biomes in the region. The eighteen sites are classified into four time-trajectory types on the basis of principal components analysis of both the REVEALS-based vegetation estimates (RVs) and the pollen percentage (PPs). The four trajectory types are more clearly separated for RVs than PPs. Further, the timing of major Holocene shifts, rates of compositional change, and diversity indices (turnover and evenness) differ between RVs and PPs. The differences are due to the reduction by REVEALS of biases in fossil pollen assemblages caused by different basin size, and inter-taxonomic differences in pollen productivity and dispersal properties. For example, in comparison to the PPs, the RVs show an earlier increase in Corylus and Ulmus in the early-Holocene and a more pronounced increase in grassland and deforested areas since the mid-Holocene. The results suggest that the influence of deforestation and agricultural activities on plant composition and abundance from Neolithic times was stronger than previously inferred from PPs. Relative to PPs, RVs show a more rapid compositional change, a largest decrease in turnover, and less variable evenness in most of northern Europe since 5200 cal yr BP. All these changes are primarily related to the strong impact of human activities on the vegetation. This study demonstrates that RV-based estimates of diversity indices, timing of shifts, and rates of change in reconstructed vegetation provide new insights into the timing and magnitude of major human distribution on Holocene regional, vegetation, feature that are critical in the assessment of human impact on vegetation, land-cover, biodiversity, and climate in the past. (C) Elsevier Ltd.All tights reserved.
  •  
12.
  • Marquer, Laurent, et al. (författare)
  • Quantifying the effects of land use and climate on Holocene vegetation in Europe
  • 2017
  • Ingår i: Quaternary Science Reviews. - : Pergamon Press. - 0277-3791 .- 1873-457X. ; 171, s. 20-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Early agriculture can be detected in palaeovegetation records, but quantification of the relative importance of climate and land use in influencing regional vegetation composition since the onset of agriculture is a topic that is rarely addressed. We present a novel approach that combines pollen-based REVEALS estimates of plant cover with climate, anthropogenic land-cover and dynamic vegetation modelling results. This is used to quantify the relative impacts of land use and climate on Holocene vegetation at a sub-continental scale, i.e. northern and western Europe north of the Alps. We use redundancy analysis and variation partitioning to quantify the percentage of variation in vegetation composition explained by the climate and land-use variables, and Monte Carlo permutation tests to assess the statistical significance of each variable. We further use a similarity index to combine pollen based REVEALS estimates with climate-driven dynamic vegetation modelling results. The overall results indicate that climate is the major driver of vegetation when the Holocene is considered as a whole and at the sub-continental scale, although land use is important regionally. Four critical phases of land-use effects on vegetation are identified. The first phase (from 7000 to 6500 BP) corresponds to the early impacts on vegetation of farming and Neolithic forest clearance and to the dominance of climate as a driver of vegetation change. During the second phase (from 4500 to 4000 BP), land use becomes a major control of vegetation. Climate is still the principal driver, although its influence decreases gradually. The third phase (from 2000 to 1500 BP) is characterised by the continued role of climate on vegetation as a consequence of late-Holocene climate shifts and specific climate events that influence vegetation as well as land use. The last phase (from 500 to 350 BP) shows an acceleration of vegetation changes, in particular during the last century, caused by new farming practices and forestry in response to population growth and industrialization. This is a unique signature of anthropogenic impact within the Holocene but European vegetation remains climatically sensitive and thus may continue to respond to ongoing climate change. (C) 2017 Elsevier Ltd. All rights reserved.
  •  
13.
  • Nikulina, Anastasia, et al. (författare)
  • Tracking Hunter-Gatherer Impact on Vegetation in Last Interglacial and Holocene Europe : Proxies and Challenges
  • 2022
  • Ingår i: Journal of archaeological method and theory. - : Springer Nature. - 1072-5369 .- 1573-7764. ; 29, s. 989-1033
  • Tidskriftsartikel (refereegranskat)abstract
    • We review palaeoenvironmental proxies and combinations of these relevant for understanding hunter-gatherer niche construction activities in pre-agricultural Europe. Our approach consists of two steps: (1) identify the possible range of hunter-gatherer impacts on landscapes based on ethnographic studies; (2) evaluate proxies possibly reflecting these impacts for both the Eemian (Last Interglacial, Middle Palaeolithic) and the Early-Middle Holocene (Mesolithic). We found these paleoenvironmental proxies were not able to unequivocally establish clear-cut differences between specific anthropogenic, climatic and megafaunal impacts for either time period in this area. We discuss case studies for both periods and show that published evidence for Mesolithic manipulation of landscapes is based on the interpretation of comparable data as available for the Last Interglacial. If one applies the 'Mesolithic' interpretation schemes to the Neanderthal record, three common niche construction activities can be hypothesised: vegetation burning, plant manipulation and impact on animal species presence and abundance. Our review suggests that as strong a case can be made for a Neanderthal impact on landscapes as for anthropogenic landscape changes during the Mesolithic, even though the Neanderthal evidence comes from only one high-resolution site complex. Further research should include attempts (e.g. by means of modelling studies) to establish whether hunter-gatherer impact on landscapes played out at a local level only versus at a larger scale during both time periods, while we also need to obtain comparative data on the population sizes of Last Interglacial and Holocene hunter-gatherers, as these are usually inferred to have differed significantly.
  •  
14.
  • Pearce, Elena A., et al. (författare)
  • Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens
  • 2023
  • Ingår i: Science Advances. - 2375-2548. ; 9:45
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent of vegetation openness in past European landscapes is widely debated. In particular, the temperate forest biome has traditionally been defined as dense, closed-canopy forest; however, some argue that large herbivores maintained greater openness or even wood-pasture conditions. Here, we address this question for the Last Interglacial period (129,000–116,000 years ago), before Homo sapiens–linked megafauna declines and anthropogenic landscape transformation. We applied the vegetation reconstruction method REVEALS to 96 Last Interglacial pollen records. We found that light woodland and open vegetation represented, on average, more than 50% cover during this period. The degree of openness was highly variable and only partially linked to climatic factors, indicating the importance of natural disturbance regimes. Our results show that the temperate forest biome was historically heterogeneous rather than uniformly dense, which is consistent with the dependency of much of contemporary European biodiversity on open vegetation and light woodland.
  •  
15.
  • Pirzamanbein, Behnaz, et al. (författare)
  • Creating spatially continuous maps of past land cover from point estimates : A new statistical approach applied to pollen data
  • 2014
  • Ingår i: Ecological Complexity. - : Elsevier BV. - 1476-945X .- 1476-9840. ; 20, s. 127-141
  • Tidskriftsartikel (refereegranskat)abstract
    • Reliable estimates of past land cover are critical for assessing potential effects of anthropogenic land-cover changes on past earth surface-climate feedbacks and landscape complexity. Fossil pollen records from lakes and bogs have provided important information on past natural and human-induced vegetation cover. However, those records provide only point estimates of past land cover, and not the spatially continuous maps at regional and sub-continental scales needed for climate modelling. We propose a set of statistical models that create spatially continuous maps of past land cover by combining two data sets: 1) pollen-based point estimates of past land cover (from the REVEALS model) and 2) spatially continuous estimates of past land cover, obtained by combining simulated potential vegetation (from LPJ-GUESS) with an anthropogenic land-cover change scenario (KK10). The proposed models rely on statistical methodology for compositional data and use Gaussian Markov Random Fields to model spatial dependencies in the data. Land-cover reconstructions are presented for three time windows in Europe: 0.05, 0.2, and 6 ka years before present (BP). The models are evaluated through cross-validation, deviance information criteria and by comparing the reconstruction of the 0.05 ka time window to the present-day land-cover data compiled by the European Forest Institute (EFI). For 0.05 ka, the proposed models provide reconstructions that are closer to the EFI data than either the REVEALS- or LPJ-GUESS/KK10-based estimates; thus the statistical combination of the two estimates improves the reconstruction. The reconstruction by the proposed models for 0.2 ka is also good. For 6 ka, however, the large differences between the REVEALS- and LPJ-GUESS/KK10-based estimates reduce the reliability of the proposed models. Possible reasons for the increased differences between REVEALS and LPJ-GUESS/KK10 for older time periods and further improvement of the proposed models are discussed. (C) 2014 Elsevier B.V. All rights reserved.
  •  
16.
  •  
17.
  • Stephens, Lucas, et al. (författare)
  • Archaeological assessment reveals Earth’s early transformation through land use
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 365:6456, s. 897-902
  • Tidskriftsartikel (refereegranskat)abstract
    • Humans began to leave lasting impacts on Earth’s surface starting 10,000 to 8000 years ago. Through a synthetic collaboration with archaeologists around the globe, Stephens et al. compiled a comprehensive picture of the trajectory of human land use worldwide during the Holocene (see the Perspective by Roberts). Hunter-gatherers, farmers, and pastoralists transformed the face of Earth earlier and to a greater extent than has been widely appreciated, a transformation that was essentially global by 3000 years before the present.Science, this issue p. 897; see also p. 865Environmentally transformative human use of land accelerated with the emergence of agriculture, but the extent, trajectory, and implications of these early changes are not well understood. An empirical global assessment of land use from 10,000 years before the present (yr B.P.) to 1850 CE reveals a planet largely transformed by hunter-gatherers, farmers, and pastoralists by 3000 years ago, considerably earlier than the dates in the land-use reconstructions commonly used by Earth scientists. Synthesis of knowledge contributed by more than 250 archaeologists highlighted gaps in archaeological expertise and data quality, which peaked for 2000 yr B.P. and in traditionally studied and wealthier regions. Archaeological reconstruction of global land-use history illuminates the deep roots of Earth’s transformation and challenges the emerging Anthropocene paradigm that large-scale anthropogenic global environmental change is mostly a recent phenomenon.
  •  
18.
  • Strandberg, Gustav, 1977-, et al. (författare)
  • Did the Bronze Age deforestation of Europe affect its climate? : A regional climate model study using pollen-based land cover reconstructions
  • 2023
  • Ingår i: Climate of the Past. - : Copernicus Publications. - 1814-9324 .- 1814-9332. ; 19:7, s. 1507-1530
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper studies the impact of land use and land cover change (LULCC) on the climate around 2500 years ago (2.5 ka), a period of rapid transitions across the European landscape. One global climate model was used to force two regional climate models (RCMs). The RCMs used two land cover descriptions. The first was from a dynamical vegetation model representing potential land cover, and the second was from a land cover description reconstructed from pollen data by statistical interpolation. The two different land covers enable us to study the impact of land cover on climate conditions. Since the difference in landscape openness between potential and reconstructed land cover is mostly due to LULCC, this can be taken as a measure of early anthropogenic effects on climate. Since the sensitivity to LULCC is dependent on the choice of climate model, we also use two RCMs. The results show that the simulated 2.5 ka climate was warmer than the simulated pre-industrial (PI, 1850 CE) climate. The largest differences are seen in northern Europe, where the 2.5 ka climate is 2-4 degrees C warmer than the PI period. In summer, the difference between the simulated 2.5 ka and PI climates is smaller (0-3 degrees C), with the smallest differences in southern Europe. Differences in seasonal precipitation are mostly within +/- 10 %. In parts of northern Europe, the 2.5 ka climate is up to 30% wetter in winter than that of the PI climate. In summer there is a tendency for the 2.5 ka climate to be drier than the PI climate in the Mediterranean region. The results also suggest that LULCC at 2.5 ka impacted the climate in parts of Europe. Simulations including reconstructed LULCC (i.e. those using pollen-derived land cover descriptions) give up to 1 degrees C higher temperature in parts of northern Europe in winter and up to 1.5 degrees C warmer in southern Europe in summer than simulations with potential land cover. Although the results are model dependent, the relatively strong response implies that anthropogenic land cover changes that had occurred during the Neolithic and Bronze Age could have affected the European climate by 2.5 ka.
  •  
19.
  • Strandberg, Gustav, 1977-, et al. (författare)
  • Mid-Holocene European climate revisited : New high-resolution regional climate model simulations using pollen-based land-cover
  • 2022
  • Ingår i: Quaternary Science Reviews. - : Elsevier. - 0277-3791 .- 1873-457X. ; 281
  • Tidskriftsartikel (refereegranskat)abstract
    • Land-cover changes have a clear impact on local climates via biophysical effects. European land cover has been affected by human activities for at least 6000 years, but possibly longer. It is thus highly probable that humans altered climate before the industrial revolution (AD1750-1850). In this study, climate and vegetation 6000 years (6 ka) ago is investigated using one global climate model, two regional climate models, one dynamical vegetation model, pollen-based reconstruction of past vegetation cover using a model of the pollen-vegetation relationship and a statistical model for spatial interpolation of the reconstructed land cover. This approach enables us to study 6 ka climate with potential natural and reconstructed land cover, and to determine how differences in land cover impact upon simulated climate. The use of two regional climate models enables us to discuss the robustness of the results. This is the first experiment with two regional climate models of simulated palaeo-climate based on regional climate models. Different estimates of 6 ka vegetation are constructed: simulated potential vegetation and reconstructed vegetation. Potential vegetation is the natural climate-induced vegetation as simulated by a dynamical vegetation model driven by climate conditions from a climate model. Bayesian spatial model interpolated point estimates of pollen-based plant abundances combined with estimates of climate-induced potential un-vegetated land cover were used for reconstructed vegetation. The simulated potential vegetation is heavily dominated by forests: evergreen coniferous forests dominate in northern and eastern Europe, while deciduous broadleaved forests dominate central and western Europe. In contrast, the reconstructed vegetation cover has a large component of open land in most of Europe. The simulated 6 ka climate using reconstructed vegetation was 0-5 degrees C warmer than the pre-industrial (PI) climate, depending on season and region. The largest differences are seen in north-eastern Europe in winter with about 4-6 degrees C, and the smallest differences (close to zero) in southwestern Europe in winter. The simulated 6 ka climate had 10-20% more precipitation than PI climate in northern Europe and 10-20% less precipitation in southern Europe in summer. The results are in reasonable agreement with proxy-based climate reconstructions and previous similar climate modelling studies. As expected, the global model and regional models indicate relatively similar climates albeit with regional differences indicating that, models response to land-cover changes differently. The results indicate that the anthropogenic land-cover changes, as given by the reconstructed vegetation, in this study are large enough to have a significant impact on climate. It is likely that anthropogenic impact on European climate via land-use change was already taking place at 6 ka. Our results suggest that anthropogenic land-cover changes at 6 ka lead to around 0.5 degrees C warmer in southern Europe in summer due to biogeophysical forcing. (C) 2022 The Authors. Published by Elsevier Ltd.
  •  
20.
  •  
21.
  •  
22.
  • Weiberg, Erika, 1971-, et al. (författare)
  • Long-term trends of land use and demography in Greece : A comparative study
  • 2019
  • Ingår i: The Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 29:5, s. 742-760
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper offers a comparative study of land use and demographic development in northern and southern Greece from the Neolithic to the Byzantine period. Results from summed probability densities (SPD) of archaeological radiocarbon dates and settlement numbers derived from archaeological site surveys are combined with results from cluster-based analysis of published pollen core assemblages to offer an integrated view of human pressure on the Greek landscape through time. We demonstrate that SPDs offer a useful approach to outline differences between regions and a useful complement to archaeological site surveys, evaluated here especially for the onset of the Neolithic and for the Final Neolithic (FN)/Early Bronze Age (EBA) transition. Pollen analysis highlight differences in vegetation between the two sub-regions, but also several parallel changes. The comparison of land cover dynamics between two sub-regions of Greece further demonstrates the significance of the bioclimatic conditions of core locations and that apparent oppositions between regions may in fact be two sides of the same coin in terms of socio-ecological trajectories. We also assess the balance between anthropogenic and climate-related impacts on vegetation and suggest that climatic variability was as an important factor for vegetation regrowth. Finally, our evidence suggests that the impact of humans on land cover is amplified from the Late Bronze Age (LBA) onwards as more extensive herding and agricultural practices are introduced.
  •  
23.
  • Woodbridge, Jessie, et al. (författare)
  • Pollen-inferred regional vegetation patterns and demographic change in Southern Anatolia through the Holocene
  • 2019
  • Ingår i: The Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 29:5, s. 728-741
  • Tidskriftsartikel (refereegranskat)abstract
    • Southern Anatolia is a highly significant area within the Mediterranean, particularly in terms of understanding how agriculture moved into Europe from neighbouring regions. This study uses pollen, palaeoclimate and archaeological evidence to investigate the relationships between demography and vegetation change, and to explore how the development of agriculture varied spatially. Data from 21 fossil pollen records have been transformed into forested, parkland and open vegetation types using cluster analysis. Patterns of change have been explored using non-metric multidimensional scaling (nMDS) and through analysis of indicator groups, such as an Anthropogenic Pollen Index, and Simpson’s Diversity. Settlement data, which indicate population densities, and summed radiocarbon dates for archaeological sites have been used as a proxy for demographic change. The pollen and archaeological records confirm that farming can be detected earlier in Anatolia in comparison with many other parts of the Mediterranean. Dynamics of change in grazing indicators and the OJCV (Olea, Juglans, Castanea and Vitis) index for cultivated trees appear to match cycles of population expansion and decline. Vegetation and land use change is also influenced by other factors, such as climate change. Investigating the early impacts of anthropogenic activities (e.g. woodcutting, animal herding, the use of fire and agriculture) is key to understanding how societies have modified the environment since the mid–late Holocene, despite the capacity of ecological systems to absorb recurrent disturbances. The results of this study suggest that shifting human population dynamics played an important role in shaping land cover in central and southern Anatolia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-23 av 23
Typ av publikation
tidskriftsartikel (17)
konferensbidrag (6)
Typ av innehåll
refereegranskat (23)
Författare/redaktör
Mazier, Florence (14)
Nielsen, Anne Birgit ... (12)
Gaillard, Marie-José ... (12)
Poska, Anneli (11)
Marquer, Laurent (7)
Gaillard, Marie-Jose (6)
visa fler...
Lindström, Johan (6)
Giesecke, Thomas (5)
Smith, Benjamin (4)
Zhang, Qiong (4)
Bjune, Anne E. (4)
Herzschuh, Ulrike (3)
Alenius, Teija (2)
Broström, Anna (2)
Kjellström, Erik (2)
Finné, Martin (2)
Seppa, Heikki (2)
Bozilova, Elissaveta (1)
Panajiotidis, Sampso ... (1)
Filipova-Marinova, M ... (1)
Tonkov, Spassimir (1)
Pidek, Irena Agniesz ... (1)
Noryskiewicz, Bozena (1)
Koff, Tiiu (1)
van Leeuwen, Jacquel ... (1)
Rundgren, Mats (1)
Martinez, Alexandre (1)
Chen, Jie (1)
Jönsson, Anna Maria (1)
Möller, Per (1)
Blaauw, Maarten (1)
Buckland, Philip I., ... (1)
Lemdahl, Geoffrey (1)
Finsinger, Walter (1)
Lotter, André F. (1)
Persson, Thomas (1)
Lechterbeck, Jutta (1)
Schmidt, Peter (1)
Olofsson, Jörgen (1)
Arthur, Frank (1)
Hatlestad, Kailin (1)
Roche, Didier M (1)
Renssen, Hans (1)
Lagerås, Per (1)
Labuhn, Inga (1)
McLoughlin, Stephen (1)
Magri, Donatella (1)
Çakırlar, Canan (1)
Normand, Signe (1)
Schläfli, Patrick (1)
visa färre...
Lärosäte
Linnéuniversitetet (17)
Lunds universitet (13)
Uppsala universitet (3)
Stockholms universitet (3)
Sveriges Lantbruksuniversitet (3)
Umeå universitet (1)
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (22)
Humaniora (3)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy