SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(García Veloso Cesar) "

Search: WFRF:(García Veloso Cesar)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gei, Maga, et al. (author)
  • Legume abundance along successional and rainfall gradients in Neotropical forests
  • 2018
  • In: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 2:7
  • Journal article (peer-reviewed)abstract
    • The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.
  •  
2.
  • Chazdon, Robin L., et al. (author)
  • Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics
  • 2016
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 2:5
  • Journal article (peer-reviewed)abstract
    • Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km2 of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.
  •  
3.
  • García Veloso, Cesar, et al. (author)
  • Real-Time Control of Plug-in Electric Vehicles for Congestion Management of Radial LV Networks : A Comparison of Implementations
  • 2020
  • In: Energies. - : MDPI. - 1996-1073. ; 13:16
  • Journal article (peer-reviewed)abstract
    • The global proliferation of plug-in electric vehicles (PEVs) poses a major challenge for current and future distribution systems. If uncoordinated, their charging process may cause congestion on both network transformers and feeders, resulting in overheating, deterioration, protection triggering and eventual risk of failure, seriously compromising the stability and reliability of the grid. To mitigate such impacts and increase their hosting capacity in radial distribution systems, the present study compares the levels of effectiveness and performances of three alternative centralized thermal management formulations for a real-time agent-based charge control algorithm that aims to minimize the total impact upon car owners. A linear formulation and a convex formulation of the optimization problem are presented and solved respectively by means of integer linear programming and a genetic algorithm. The obtained results are then compared, in terms of their total impact on the end-users and overall performance, with those of the current heuristic implementation of the algorithm. All implementations were tested using a simulation environment considering multiple vehicle penetration and base load levels, and equipment modeled after commercially available charging stations and vehicles. Results show how faster resolution times are achieved by the heuristic implementation, but no significant differences between formulations exist in terms of network management and end-user impact. Every vehicle reached its maximum charge level while all thermal impacts were mitigated for all considered scenarios. The most demanding scenario showcased over a 30% reduction in the peak load for all thermal variants.
  •  
4.
  •  
5.
  • Poorter, Lourens, et al. (author)
  • Wet and dry tropical forests show opposite successional pathways in wood density but converge over time
  • 2019
  • In: Nature Ecology & Evolution. - : Nature Publishing Group. - 2397-334X. ; 3:6, s. 928-934
  • Journal article (peer-reviewed)abstract
    • Tropical forests are converted at an alarming rate for agricultural use and pastureland, but also regrow naturally through secondary succession. For successful forest restoration, it is essential to understand the mechanisms of secondary succession. These mechanisms may vary across forest types, but analyses across broad spatial scales are lacking. Here, we analyse forest recovery using 1,403 plots that differ in age since agricultural abandonment from 50 sites across the Neotropics. We analyse changes in community composition using species-specific stem wood density (WD), which is a key trait for plant growth, survival and forest carbon storage. In wet forest, succession proceeds from low towards high community WD (acquisitive towards conservative trait values), in line with standard successional theory. However, in dry forest, succession proceeds from high towards low community WD (conservative towards acquisitive trait values), probably because high WD reflects drought tolerance in harsh early successional environments. Dry season intensity drives WD recovery by influencing the start and trajectory of succession, resulting in convergence of the community WD over time as vegetation cover builds up. These ecological insights can be used to improve species selection for reforestation. Reforestation species selected to establish a first protective canopy layer should, among other criteria, ideally have a similar WD to the early successional communities that dominate under the prevailing macroclimatic conditions.
  •  
6.
  • Veloso, Cesar Garcia, et al. (author)
  • Real-time agent-based control of plug-in electric vehicles for voltage and thermal management of LV networks : formulation and HIL validation
  • 2020
  • In: IET Generation, Transmission & Distribution. - : Institution of Engineering and Technology (IET). - 1751-8687 .- 1751-8695. ; 14:11, s. 2169-2180
  • Journal article (peer-reviewed)abstract
    • Ensuring a stable and reliable operation of current and future distribution networks represents a major challenge for system operators aggravated by the global proliferation of plug-in electric vehicles (PEVs). While the introduction of a controlled charging process would be advantageous to minimise the impacts PEVs cause in the system, a suitable, efficient and ready to be implemented solution is still missing. The present work addresses this issue by proposing a smart charging management solution capable to simultaneously combat the main network impacts derived from the energy needs of the vehicles. This is done by means of an agent-based hierarchical real-time algorithm which combines a local decentralised nodal voltage management with a centralised thermal control conceived to minimise the impact upon participating users. The effectiveness of the proposed system is tested both using a simulation environment considering multiple PEV penetration levels and employing commercially available charging stations and cars through hardware-in-the-loop simulations. The results reveal how all network violations are successfully attenuated by peak shaving the total aggregated charging demand and ensuring a correct system operation for all penetration scenarios while inflicting no impact on the participating users.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view