SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Glassmeier K. H) "

Sökning: WFRF:(Glassmeier K. H)

  • Resultat 1-25 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Witasse, O., et al. (författare)
  • Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto : Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 122:8, s. 7865-7890
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss observations of the journey throughout the Solar System of a large interplanetary coronal mass ejection (ICME) that was ejected at the Sun on 14 October 2014. The ICME hit Mars on 17 October, as observed by the Mars Express, Mars Atmosphere and Volatile EvolutioN Mission (MAVEN), Mars Odyssey, and Mars Science Laboratory (MSL) missions, 44h before the encounter of the planet with the Siding-Spring comet, for which the space weather context is provided. It reached comet 67P/Churyumov-Gerasimenko, which was perfectly aligned with the Sun and Mars at 3.1 AU, as observed by Rosetta on 22 October. The ICME was also detected by STEREO-A on 16 October at 1 AU, and by Cassini in the solar wind around Saturn on the 12 November at 9.9AU. Fortuitously, the New Horizons spacecraft was also aligned with the direction of the ICME at 31.6 AU. We investigate whether this ICME has a nonambiguous signature at New Horizons. A potential detection of this ICME by Voyager 2 at 110-111 AU is also discussed. The multispacecraft observations allow the derivation of certain properties of the ICME, such as its large angular extension of at least 116 degrees, its speed as a function of distance, and its magnetic field structure at four locations from 1 to 10 AU. Observations of the speed data allow two different solar wind propagation models to be validated. Finally, we compare the Forbush decreases (transient decreases followed by gradual recoveries in the galactic cosmic ray intensity) due to the passage of this ICME at Mars, comet 67P, and Saturn.
  •  
2.
  • Mandt, K. E., et al. (författare)
  • RPC observation of the development and evolution of plasma interaction boundaries at 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S9-S22
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the primary objectives of the Rosetta Plasma Consortium, a suite of five plasma instruments on-board the Rosetta spacecraft, is to observe the formation and evolution of plasma interaction regions at the comet 67P/Churyumov-Gerasimenko (67P/CG). Observations made between 2015 April and 2016 February show that solar wind-cometary plasma interaction boundaries and regions formed around 2015 mid-April and lasted through early 2016 January. At least two regions were observed, separated by an ion-neutral collisionopause boundary. The inner region was located on the nucleus side of the boundary and was characterized by low-energy water-group ions, reduced magnetic field pileup and enhanced electron densities. The outer region was located outside of the boundary and was characterized by reduced electron densities, water-group ions that are accelerated to energies above 100 eV and enhanced magnetic field pileup compared to the inner region. The boundary discussed here is outside of the diamagnetic cavity and shows characteristics similar to observations made on-board the Giotto spacecraft in the ion pileup region at 1P/Halley. We find that the boundary is likely to be related to ion-neutral collisions and that its location is influenced by variability in the neutral density and the solar wind dynamic pressure.
  •  
3.
  • Volwerk, M., et al. (författare)
  • Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 34:1, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • The data from all Rosetta plasma consortium instruments and from the ROSINA COPS instrument are used to study the interaction of the solar wind with the outgassing cometary nucleus of 67P/Churyumov-Gerasimenko. During 6 and 7 June 2015, the interaction was first dominated by an increase in the solar wind dynamic pressure, caused by a higher solar wind ion density. This pressure compressed the draped magnetic field around the comet, and the increase in solar wind electrons enhanced the ionization of the outflow gas through collisional ionization. The new ions are picked up by the solar wind magnetic field, and create a ring/ring-beam distribution, which, in a high-beta plasma, is unstable for mirror mode wave generation. Two different kinds of mirror modes are observed: one of small size generated by locally ionized water and one of large size generated by ionization and pick-up farther away from the comet.
  •  
4.
  • Galand, M., et al. (författare)
  • Ionospheric plasma of comet 67P probed by Rosetta at 3 au from the Sun
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S331-S351
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose to identify the main sources of ionization of the plasma in the coma of comet 67P/Churyumov-Gerasimenko at different locations in the coma and to quantify their relative importance, for the first time, for close cometocentric distances (< 20 km) and large heliocentric distances (> 3 au). The ionospheric model proposed is used as an organizing element of a multi-instrument data set from the Rosetta Plasma Consortium (RPC) plasma and particle sensors, from the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis and from the Microwave Instrument on the Rosetta Orbiter, all on board the ESA/Rosetta spacecraft. The calculated ionospheric density driven by Rosetta observations is compared to the RPC-Langmuir Probe and RPC-Mutual Impedance Probe electron density. The main cometary plasma sources identified are photoionization of solar extreme ultraviolet (EUV) radiation and energetic electron-impact ionization. Over the northern, summer hemisphere, the solar EUV radiation is found to drive the electron density - with occasional periods when energetic electrons are also significant. Over the southern, winter hemisphere, photoionization alone cannot explain the observed electron density, which reaches sometimes higher values than over the summer hemisphere; electron-impact ionization has to be taken into account. The bulk of the electron population is warm with temperature of the order of 7-10 eV. For increased neutral densities, we show evidence of partial energy degradation of the hot electron energy tail and cooling of the full electron population.
  •  
5.
  • Milillo, A., et al. (författare)
  • Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission
  • 2020
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 216:5
  • Forskningsöversikt (refereegranskat)abstract
    • The ESA-JAXA BepiColombo mission will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric dynamics at Mercury as well as their interactions with the solar wind, radiation, and interplanetary dust. Many scientific instruments onboard the two spacecraft will be completely, or partially devoted to study the near-space environment of Mercury as well as the complex processes that govern it. Many issues remain unsolved even after the MESSENGER mission that ended in 2015. The specific orbits of the two spacecraft, MPO and Mio, and the comprehensive scientific payload allow a wider range of scientific questions to be addressed than those that could be achieved by the individual instruments acting alone, or by previous missions. These joint observations are of key importance because many phenomena in Mercury's environment are highly temporally and spatially variable. Examples of possible coordinated observations are described in this article, analysing the required geometrical conditions, pointing, resolutions and operation timing of different BepiColombo instruments sensors.
  •  
6.
  • Richter, I., et al. (författare)
  • Observation of a new type of low-frequency waves at comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 33:8, s. 1031-1036
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low-activity state. Quasi-coherent, large-amplitude (delta B/B similar to 1), compressional magnetic field oscillations at similar to 40 mHz dominate the immediate plasma environment of the nucleus. This differs from previously studied cometary interaction regions where waves at the cometary ion gyro-frequencies are the main feature. Thus classical pickup-ion-driven instabilities are unable to explain the observations. We propose a cross-field current instability associated with newborn cometary ion currents as a possible source mechanism.
  •  
7.
  • Volwerk, M., et al. (författare)
  • Current sheets in comet 67P/Churyumov-Gerasimenko's coma
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:3, s. 3308-3321
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rosetta Plasma Consortium (RPC) data are used to investigate the presence of current sheets in the coma of comet 67P/Churyumov-Gerasimenko. The interaction of the interplanetary magnetic field (IMF) transported by the solar wind toward the outgassing comet consists amongst others of mass loading and field line draping near the nucleus. The draped field lines lead to so-called nested draping because of the constantly changing direction of the IMF. It is shown that the draping pattern is strongly variable over the period of one month. Nested draping results in neighbouring regions with oppositely directed magnetic fields, which are separated by current sheets. Selected events on 5 and 6 June 2015 are studied, which show that there are strong rotations of the magnetic field with associated current sheets that have strengths from several tens up to hundreds of nA/m(2). Not all discussed current sheets show the characteristic peak in plasma density at the centre of the sheet, which might be related to the presence of a guide field. There is no evidence for different kinds of plasmas on either side of a current sheet, and no strongly accelerated ions have been observed which could have been an indication of magnetic reconnection in the current sheets. Plain Language Summary The solar wind, consisting of plasma and magnetic field, cannot uninhabited flow past an active comet. The interaction of the gas coming out of the comet, which gets ionized, and the solar wind leads to a slowing down of the latter, and the magnetic field gets draped around the nucleus of the comet. As the solar wind magnetic field is not constant over time, there will be layers of different directions draped on top of each other, which leads to the generation of current sheets. In this paper the strength of the currents is determined, and signatures of possible magnetic reconnection are looked for but were not found.
  •  
8.
  • Edberg, Niklas J. T., et al. (författare)
  • CME impact on comet 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S45-S56
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Rosetta observations from comet 67P/Churyumov-Gerasimenko during the impact of a coronal mass ejection (CME). The CME impacted on 2015 Oct 5-6, when Rosetta was about 800 km from the comet nucleus, and 1.4 au from the Sun. Upon impact, the plasma environment is compressed to the level that solar wind ions, not seen a few days earlier when at 1500 km, now reach Rosetta. In response to the compression, the flux of suprathermal electrons increases by a factor of 5-10 and the background magnetic field strength increases by a factor of similar to 2.5. The plasma density increases by a factor of 10 and reaches 600 cm(-3), due to increased particle impact ionization, charge exchange and the adiabatic compression of the plasma environment. We also observe unprecedentedly large magnetic field spikes at 800 km, reaching above 200 nT, which are interpreted as magnetic flux ropes. We suggest that these could possibly be formed by magnetic reconnection processes in the coma as the magnetic field across the CME changes polarity, or as a consequence of strong shears causing Kelvin-Helmholtz instabilities in the plasma flow. Due to the limited orbit of Rosetta, we are not able to observe if a tail disconnection occurs during the CME impact, which could be expected based on previous remote observations of other CME-comet interactions.
  •  
9.
  • Edberg, Niklas J. T., et al. (författare)
  • Spatial distribution of low-energy plasma around comet 67P/CG from Rosetta measurements
  • 2015
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:11, s. 4263-4269
  • Tidskriftsartikel (refereegranskat)abstract
    • We use measurements from the Rosetta plasma consortium Langmuir probe and mutual impedance probe to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e., the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be approximate to 1-210(-6), at a cometocentric distance of 10km and at 3.1AU from the Sun. A clear 6.2h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisionless plasma within 260km from the nucleus falls off with radial distance as approximate to 1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet.
  •  
10.
  • Goetz, C., et al. (författare)
  • Cometary plasma science : Open science questions for future space missions
  • 2021
  • Ingår i: Experimental astronomy. - : Springer Nature. - 0922-6435 .- 1572-9508.
  • Tidskriftsartikel (refereegranskat)abstract
    • Comets hold the key to the understanding of our Solar System, its formation and its evolution, and to the fundamental plasma processes at work both in it and beyond it. A comet nucleus emits gas as it is heated by the sunlight. The gas forms the coma, where it is ionised, becomes a plasma, and eventually interacts with the solar wind. Besides these neutral and ionised gases, the coma also contains dust grains, released from the comet nucleus. As a cometary atmosphere develops when the comet travels through the Solar System, large-scale structures, such as the plasma boundaries, develop and disappear, while at planets such large-scale structures are only accessible in their fully grown, quasi-steady state. In situ measurements at comets enable us to learn both how such large-scale structures are formed or reformed and how small-scale processes in the plasma affect the formation and properties of these large scale structures. Furthermore, a comet goes through a wide range of parameter regimes during its life cycle, where either collisional processes, involving neutrals and charged particles, or collisionless processes are at play, and might even compete in complicated transitional regimes. Thus a comet presents a unique opportunity to study this parameter space, from an asteroid-like to a Mars- and Venus-like interaction. The Rosetta mission and previous fast flybys of comets have together made many new discoveries, but the most important breakthroughs in the understanding of cometary plasmas are yet to come. The Comet Interceptor mission will provide a sample of multi-point measurements at a comet, setting the stage for a multi-spacecraft mission to accompany a comet on its journey through the Solar System. This White Paper, submitted in response to the European Space Agency’s Voyage 2050 call, reviews the present-day knowledge of cometary plasmas, discusses the many questions that remain unanswered, and outlines a multi-spacecraft European Space Agency mission to accompany a comet that will answer these questions by combining both multi-spacecraft observations and a rendezvous mission, and at the same time advance our understanding of fundamental plasma physics and its role in planetary systems.
  •  
11.
  • Goetz, C., et al. (författare)
  • First detection of a diamagnetic cavity at comet 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 588
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Rosetta magnetometer RPC-MAG has been exploring the plasma environment of comet 67P/Churyumov-Gerasimenko since August 2014. The first months were dominated by low-frequency waves which evolved into more complex features. However, at the end of July 2015, close to perihelion, the magnetometer detected a region that did not contain any magnetic field at all. Aims. These signatures match the appearance of a diamagnetic cavity as was observed at comet 1P/Halley in 1986. The cavity here is more extended than previously predicted by models and features unusual magnetic field configurations, which need to be explained. Methods. The onboard magnetometer data were analyzed in detail and used to estimate the outgassing rate. A minimum variance analysis was used to determine boundary normals. Results. Our analysis of the data acquired by the Rosetta Plasma Consortium instrumentation confirms the existence of a diamagnetic cavity. The size is larger than predicted by simulations, however. One possible explanation are instabilities that are propagating along the cavity boundary and possibly a low magnetic pressure in the solar wind. This conclusion is supported by a change in sign of the Sun-pointing component of the magnetic field. Evidence also indicates that the cavity boundary is moving with variable velocities ranging from 230 500m/s.
  •  
12.
  • Goetz, C., et al. (författare)
  • Structure and evolution of the diamagnetic cavity at comet 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S459-S467
  • Tidskriftsartikel (refereegranskat)abstract
    • The long duration of the Rosetta mission allows us to study the evolution of the diamagnetic cavity at comet 67P/Churyumov-Gerasimenko in detail. From 2015 April to 2016 February 665 intervals could be identified where Rosetta was located in a zero-magnetic-field region. We study the temporal and spatial distribution of this cavity and its boundary and conclude that the cavity properties depend on the long-term trend of the outgassing rate, but do not respond to transient events at the spacecraft location, such as outbursts or high neutral densities. Using an empirical model of the outgassing rate, we find a functional relationship between the outgassing rate and the distance of the cavity to the nucleus. There is also no indication that this unexpectedly large distance is related to unusual solar wind conditions. Because the deduced shape of the cavity boundary is roughly elliptical on small scales and the distances of the boundary from the nucleus are much larger than expected we conclude that the events observed by Rosetta are due to a moving instability of the cavity boundary itself.
  •  
13.
  • Gunell, H., et al. (författare)
  • Ion acoustic waves at comet 67P/Churyumov-Gerasimenko : Observations and computations
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 600
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On 20 January 2015 the Rosetta spacecraft was at a heliocentric distance of 2.5 AU, accompanying comet 67P/Churyumov-Gerasimenko on its journey toward the Sun. The Ion Composition Analyser (RPC-ICA), other instruments of the Rosetta Plasma Consortium, and the ROSINA instrument made observations relevant to the generation of plasma waves in the cometary environment.Aims. Observations of plasma waves by the Rosetta Plasma Consortium Langmuir probe (RPC-LAP) can be explained by dispersion relations calculated based on measurements of ions by the Rosetta Plasma Consortium Ion Composition Analyser (RPC-ICA), and this gives insight into the relationship between plasma phenomena and the neutral coma, which is observed by the Comet Pressure Sensor of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis instrument (ROSINA-COPS).Methods. We use the simple pole expansion technique to compute dispersion relations for waves on ion timescales based on the observed ion distribution functions. These dispersion relations are then compared to the waves that are observed. Data from the instruments RPC-LAP, RPC-ICA and the mutual impedance probe (RPC-MIP) are compared to find the best estimate of the plasma density.Results. We find that ion acoustic waves are present in the plasma at comet 67P/Churyumov-Gerasimenko, where the major ion species is H2O+. The bulk of the ion distribution is cold, k(B)T(i) = 0.01 eV when the ion acoustic waves are observed. At times when the neutral density is high, ions are heated through acceleration by the solar wind electric field and scattered in collisions with the neutrals. This process heats the ions to about 1 eV, which leads to significant damping of the ion acoustic waves.Conclusions. In conclusion, we show that ion acoustic waves appear in the H2O+ plasmas at comet 67P/Churyumov-Gerasimenko and how the interaction between the neutral and ion populations affects the wave properties.
  •  
14.
  • Hajra, R., et al. (författare)
  • Impact of a cometary outburst on its ionosphere Rosetta Plasma Consortium observations of the outburst exhibited by comet 67P/Churyumov-Gerasimenko on 19 February 2016
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 607
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed study of the cometary ionospheric response to a cometary brightness outburst using in situ measurements for the first time. The comet 67P/Churyumov-Gerasimenko (67P) at a heliocentric distance of 2.4 AU from the Sun, exhibited an outburst at similar to 1000 UT on 19 February 2016, characterized by an increase in the coma surface brightness of two orders of magnitude. The Rosetta spacecraft monitored the plasma environment of 67P from a distance of 30 km, orbiting with a relative speed of similar to 0.2 m s(-1). The onset of the outburst was preceded by pre-outburst decreases in neutral gas density at Rosetta, in local plasma density, and in negative spacecraft potential at similar to 0950 UT. In response to the outburst, the neutral density increased by a factor of similar to 1.8 and the local plasma density increased by a factor of similar to 3, driving the spacecraft potential more negative. The energetic electrons (tens of eV) exhibited decreases in the flux of factors of similar to 2 to 9, depending on the energy of the electrons. The local magnetic field exhibited a slight increase in amplitude (similar to 5 nT) and an abrupt rotation (similar to 36.4 degrees) in response to the outburst. A weakening of 10-100 mHz magnetic field fluctuations was also noted during the outburst, suggesting alteration of the origin of the wave activity by the outburst. The plasma and magnetic field effects lasted for about 4 h, from similar to 1000 UT to 1400 UT. The plasma densities are compared with an ionospheric model. This shows that while photoionization is the main source of electrons, electron-impact ionization and a reduction in the ion outflow velocity need to be accounted for in order to explain the plasma density enhancement near the outburst peak.
  •  
15.
  • Angelopoulos, V., et al. (författare)
  • First Results from the THEMIS Mission
  • 2008
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 141:1-4, s. 453-476
  • Forskningsöversikt (refereegranskat)abstract
    • THEMIS was launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. During the first seven months of the mission the five satellites coasted near their injection orbit to avoid differential precession in anticipation of orbit placement, which started in September 2007 and led to a commencement of the baseline mission in December 2007. During the coast phase the probes were put into a string-of-pearls configuration at 100 s of km to 2 R-E along-track separations, which provided a unique view of the magnetosphere and enabled an unprecedented dataset in anticipation of the first tail season. In this paper we describe the first THEMIS substorm observations, captured during instrument commissioning on March 23, 2007. THEMIS measured the rapid expansion of the plasma sheet at a speed that is commensurate with the simultaneous expansion of the auroras on the ground. These are the first unequivocal observations of the rapid westward expansion process in space and on the ground. Aided by the remote sensing technique at energetic particle boundaries and combined with ancillary measurements and MHD simulations, they allow determination and mapping of space currents. These measurements show the power of the THEMIS instrumentation in the tail and the radiation belts. We also present THEMIS Flux Transfer Events (FTE) observations at the magnetopause, which demonstrate the importance of multi-point observations there and the quality of the THEMIS instrumentation in that region of space.
  •  
16.
  • Carr, C., et al. (författare)
  • RPC : The rosetta plasma consortium
  • 2007
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 128:1-4, s. 629-647
  • Forskningsöversikt (refereegranskat)abstract
    • The Rosetta Plasma Consortium (RPC) will make in-situ measurements of the plasma enviromnent of comet 67P/Churyumov-Gerasimenko. The consortium will provide the complementary data sets necessary for an understanding of the plasma processes in the inner coma, and the structure and evolution of the coma with the increasing cometary activity. Five sensors have been selected to achieve this: the Ion and Electron Sensor (IES), the Ion Composition Analyser (ICA), the Langmuir Probe (LAP), the Mutual Impedance Probe (MIP) and the Magnetometer (MAG). The sensors interface to the spacecraft through the Plasma Interface Unit (PIU). The consortium approach allows for scientific, technical and operational coordination, and makes Optimum use of the available mass and power resources.
  •  
17.
  • Edberg, Niklas J. T., et al. (författare)
  • Simultaneous measurements of Martian plasma boundaries by Rosetta and Mars Express
  • 2009
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 57:8-9, s. 1085-1096
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first two-spacecraft near-simultaneous observations of the Martian bow shock (BS), magnetic pileup boundary (MPB) and photo-electron boundary (PEB) obtained by the plasma instruments onboard Rosetta and Mars Express during the Rosetta Mars fly by on February 25, 2007. Our observations are compared with shape models for the BS and MPB derived from previous statistical studies. The MPB is found at its expected position but the BS for this event is found significantly closer to the planet than expected for the rather slow and moderately dense solar wind. Cross-calibration of the density measurements on the two spacecraft gives a density profile through the magnetosheath, indicating an increasing solar wind flux during the Rosetta passage which is consistent with the multiple BS crossings at the Rosetta exit.
  •  
18.
  • Edberg, Niklas J. T., et al. (författare)
  • Solar wind interaction with comet 67P : Impacts of corotating interaction regions
  • 2016
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:2, s. 949-965
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations from the Rosetta Plasma Consortium of the effects of stormy solar wind on comet 67P/Churyumov-Gerasimenko. Four corotating interaction regions (CIRs), where the first event has possibly merged with a coronal mass ejection, are traced from Earth via Mars (using Mars Express and Mars Atmosphere and Volatile EvolutioN mission) to comet 67P from October to December 2014. When the comet is 3.1-2.7AU from the Sun and the neutral outgassing rate approximate to 10(25)-10(26)s(-1), the CIRs significantly influence the cometary plasma environment at altitudes down to 10-30km. The ionospheric low-energy (approximate to 5eV) plasma density increases significantly in all events, by a factor of >2 in events 1 and 2 but less in events 3 and 4. The spacecraft potential drops below -20V upon impact when the flux of electrons increases. The increased density is likely caused by compression of the plasma environment, increased particle impact ionization, and possibly charge exchange processes and acceleration of mass-loaded plasma back to the comet ionosphere. During all events, the fluxes of suprathermal (approximate to 10-100eV) electrons increase significantly, suggesting that the heating mechanism of these electrons is coupled to the solar wind energy input. At impact the magnetic field strength in the coma increases by a factor of 2-5 as more interplanetary magnetic field piles up around the comet. During two CIR impact events, we observe possible plasma boundaries forming, or moving past Rosetta, as the strong solar wind compresses the cometary plasma environment. We also discuss the possibility of seeing some signatures of the ionospheric response to tail disconnection events.
  •  
19.
  • Edberg, Niklas, et al. (författare)
  • Rosetta and Mars Express observations of the influence of high solar wind pressure on the Martian plasma environment
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:12, s. 4533-4545
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on new simultaneous in-situ observations at Mars from Rosetta and Mars Express (MEX) on how the Martian plasma environment is affected by high pressure solar wind. A significant sharp increase in solar wind density, magnetic field strength and turbulence followed by a gradual increase in solar wind velocity is observed during similar to 24 h in the combined data set from both spacecraft after Rosetta's closest approach to Mars on 25 February 2007. The bow shock and magnetic pileup boundary are coincidently observed by MEX to become asymmetric in their shapes. The fortunate orbit of MEX at this time allows a study of the inbound boundary crossings on one side of the planet and the outbound crossings on almost the opposite side, both very close to the terminator plane. The solar wind and interplanetary magnetic field (IMF) downstream of Mars are monitored through simultaneous measurements provided by Rosetta. Possible explanations for the asymmetries are discussed, such as crustal magnetic fields and IMF direction. In the same interval, during the high solar wind pressure pulse, MEX observations show an increased amount of escaping planetary ions from the polar region of Mars. We link the high pressure solar wind with the observed simultaneous ion outflow and discuss how the pressure pulse could also be associated with the observed boundary shape asymmetry.
  •  
20.
  • Goldstein, Raymond, et al. (författare)
  • Two years of solar wind and pickup ion measurements at comet 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S262-S267
  • Tidskriftsartikel (refereegranskat)abstract
    • The Ion and Electron Sensor (IES) as well as other members of the Rosetta Plasma Consortium (RPC) on board the Rosetta spacecraft (S/C) measured the characteristics of the solar wind almost continuously since its arrival at 67P/Churyumov-Gerasimenko (CG) in 2014 August. An important process at a comet is the so-called pickup process in which a newly ionized atom or molecule begins gyrating about the interplanetary magnetic field, is accelerated in the process and is carried along with the solar wind. Within a month after comet arrival, while Rosetta was < 100 km from CG, we began to observe low-energy (< 20 eV) positive ions. We believe that these are newly formed from cometary neutrals near Rosetta and attracted to the negative S/C potential. These ions were in the early phase of pickup and had not yet reached the energy they would after at least one full gyration about the magnetic field. As CG increased its activity, the flux and energy of the measured pickup ions increased intermittently while the solar wind appeared intermittently as well. By about 2015 end of April, the solar wind had become very faint until it eventually disappeared from the IES field of view. We then began to see ions at the highest energy levels of IES, > 10 keV for a few days and then intermittently through the remainder of the mission, but lower energy (a few keV) pickup ions were also observed. As of 2016 early February, the solar wind reappeared more consistently. We believe that the disappearance of the solar wind in the IES field of view is the result of interaction with the pickup ions and the eventual formation of a cavity that excluded the solar wind.
  •  
21.
  • Horbury, T., et al. (författare)
  • Cross-scale : A multi-spacecraft mission to study cross-scale coupling in space plasmas
  • 2006
  • Ingår i: European Space Agency, (Special Publication) ESA SP. ; , s. 561-568
  • Konferensbidrag (refereegranskat)abstract
    • Collisionless astrophysical plasmas exhibit complexity on many scales: if we are to understand their properties and effects, we must measure this complexity. We can identify a small number of processes and phenomena, one of which is dominant in almost every space plasma region of interest: shocks, reconnection and turbulence. These processes act to transfer energy between locations, scales and modes. However, this transfer is characterised by variability and 3D structure on at least three scales: electron kinetic, ion kinetic and fluid. It is the nonlinear interaction between physical processes at these scales that is the key to understanding these phenomena and predicting their effects. However, current and planned multi-spacecraft missions such as Cluster and MMS only study variations on one scale in 3D at any given time - we must measure the three scales simultaneously fully to understand the energy transfer processes. We propose a mission, called Cross-Scale, to study these processes. Cross-Scale would comprise three nested groups, each consisting of up to four spacecraft. Each group would have a different spacecraft separation, at approximately the electron and ion gyroradii, and a larger MHD scale. We would therefore be able to measure variations on all three important physical scales, simultaneously, for the first time. The spacecraft would fly in formation through key regions of near-Earth space: The solar wind, bowshock, magnetosheath, magnetopause and magnetotail.
  •  
22.
  • Schaefer, S., et al. (författare)
  • Spatial and temporal characteristics of poloidal waves in the terrestrial plasmasphere : a CLUSTER case study
  • 2007
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 25:4, s. 1011-1024
  • Tidskriftsartikel (refereegranskat)abstract
    • Oscillating magnetic field lines are frequently observed by spacecraft in the terrestrial and other planetary magnetospheres. The CLUSTER mission is a very suitable tool to further study these Alfven waves as the four CLUSTER spacecraft provide for an opportunity to separate spatial and temporal structures in the terrestrial magnetosphere. Using a large scaled configuration formed by the four spacecraft we are able to detect a poloidal Ultra-Low-Frequency (ULF) pulsation of the magnetic and electric field in order to analyze its temporal and spatial structures. For this purpose the measurements are transformed into a specific field line related coordinate system to investigate their specific amplitude pattern depending on the path of the CLUSTER spacecraft across oscillating field lines. These measurements are then compared with modeled spacecraft observations across a localized poloidal wave resonator in the dayside plasmasphere. A detailed investigation of theoretically expected poloidal eigenfrequencies allows us to specify the observed 16 mHz pulsation as a third harmonic oscillation. Based on this we perform a case study providing a clear identification of wave properties such as an spatial scale structure of about 0.67 R-E. the azimuthal wave number m approximate to 30, temporal evolution, and energy transport in the detected ULF pulsations.
  •  
23.
  • Schafer, S., et al. (författare)
  • Spatio-temporal structure of a poloidal Alfven wave detected by Cluster adjacent to the dayside plasmapause
  • 2008
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 26:7, s. 1805-1817
  • Tidskriftsartikel (refereegranskat)abstract
    • A case study of a poloidal ULF pulsation near the dayside plasmapause is presented based on Cluster observations of magnetic and electric fields. The pulsation is detected close to the magnetic equatorial plane at L shells L=[4.4, 4.6] and oscillates with a frequency of f=23 mHz. Investigating the wave energy flux reveals the standing wave nature of the observed pulsation. An estimation of the azimuthal wave number exposes a narrow azimuthal structure of the wave field with m approximate to 160. Spatial and temporal characteristics of the pulsation are analyzed in detail by representing data in a field line related coordinate system and a range-time-intensity representation. This allows an estimation of both the spatial extension of the wave field in the radial direction and its temporal decay rate. The analysis furthermore indicates that the same field lines are excited to a standing wave oscillation twice. Furthermore an accurate identification of a phase jump of the wave field across L shells is possible. Comparing the radial localization of the detected wave with theoretically expected field line eigenfrequencies reveals that the wave field is confined in the Alfven resonator at the outer edge of the plasmapause.
  •  
24.
  • Eastwood, J. P., et al. (författare)
  • THEMIS observations of a hot flow anomaly : Solar wind, magnetosheath, and ground-based measurements
  • 2008
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 35:17, s. L17S03-
  • Tidskriftsartikel (refereegranskat)abstract
    • The THEMIS spacecraft encountered a Hot Flow Anomaly ( HFA) on the dusk flank of the Earth's bow shock on 4 July 2007, observing it on both sides of the shock. Meanwhile, the THEMIS ground magnetometers traced the progress of the associated Magnetic Impulse Event along the dawn flank of the magnetosphere, providing a unique opportunity to study the transmission of the HFA through the shock and the subsequent downstream response. THEMIS-A, in the solar wind, observed classic HFA signatures. Isotropic electron distributions inside the upstream HFA are attributed to the action of the electron firehose instability. THEMIS-E, just downstream, observed a much more complex disturbance with the pressure perturbation decoupled from the underlying discontinuity. Simple calculations show that the pressure perturbation would be capable of significantly changing the magnetopause location, which is confirmed by the ground-based observations.
  •  
25.
  • Eriksson, S., et al. (författare)
  • Magnetic island formation between large-scale flow vortices at an undulating postnoon magnetopause for northward interplanetary magnetic field
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114:2, s. A00C17-
  • Tidskriftsartikel (refereegranskat)abstract
    • Time History of Events and Macroscale Interactions during Substorms multispacecraft observations are presented for a similar to 2-h-long postnoon magnetopause event on 8 June 2007 that for the first time indicate that the trailing (sunward) edges of Kelvin-Helmholtz (KH) waves are commonly related to small-scale < 0.56 R-E magnetic islands or flux transfer events (FTE) during the growth phase of these surface waves. The FTEs typically show a characteristic bipolar B-N structure with enhanced total pressure at their center. Most of the small-scale FTEs are not related to any major plasma acceleration. TH-A observations of one small FTE at a transition from the low-latitude boundary layer (LLBL) into a magnetosheath plasma depletion layer were reconstructed using separate techniques that together confirm the presence of a magnetic island within the LLBL adjacent to the magnetopause. The island was associated with a small plasma vortex and both features appeared between two large-scale (similar to 1 R-E long and 2000 km wide) plasma vortices. We propose that the observed magnetic islands may have been generated from a time-varying reconnection process in a low ion plasma beta (beta(i) < 0.2) and low 8.3 degrees field shear environment at the sunward edge of the growing KH waves where the local magnetopause current sheet may be compressed by the converging flow of the large-scale plasma vortices as suggested by numerical simulations of the KH instability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy