SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gorski Mark 1989) "

Sökning: WFRF:(Gorski Mark 1989)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Falstad, Niklas, 1987, et al. (författare)
  • CON-quest: Searching for the most obscured galaxy nuclei
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Some luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) host extremely compact (r < 100 pc) and dusty nuclei. The high extinction associated with large column densities of gas and dust toward these objects render them hard to detect at many wavelengths. The intense infrared radiation arising from warm dust in these sources can provide a significant fraction of the bolometric luminosity of the galaxy and is prone to excite vibrational levels of molecules such as HCN. This results in emission from the rotational transitions of vibrationally excited HCN (HCN-vib); the brightest emission is found in compact obscured nuclei (CONs; ςHCN-vib > 1 L⊙ pc-2 in the J = 3-2 transition). However, there have been no systematic searches for CONs, and it is unknown how common they are. Aims. We aim to establish how common CONs are in the local Universe (z < 0.08), and whether their prevalence depends on the luminosity or other properties of the host galaxy. Methods. We conducted an Atacama Large Millimeter/submillimeter Array survey of the rotational J = 3-2 transition of HCN-vib in a volume-limited sample of 46 far-infrared luminous galaxies. Results. Compact obscured nuclei are identified in 38-13+18% of the ULIRGs, 21-6+12% of the LIRGs, and 0-0+9% of the lower luminosity galaxies. We find no dependence on the inclination of the host galaxy, but strong evidence of lower IRAS 25 μm to 60 μm flux density ratios (f25/f60) in CONs (with the exception of one galaxy, NGC 4418) compared to the rest of the sample. Furthermore, we find that CONs have stronger silicate features (s9.7 μm), but similar polycyclic aromatic hydrocarbon equivalent widths (EQW6.2 μm) compared to other galaxies. Along with signatures of molecular inflows seen in the far-infrared in most CONs, submillimeter observations also reveal compact, often collimated, outflows. Conclusions. In the local Universe, CONs are primarily found in (U)LIRGs, in which they are remarkably common. As such systems are often highly disturbed, inclinations are difficult to estimate, and high-resolution continuum observations of the individual nuclei are required to determine if the CON phenomenon is related to the inclinations of the nuclear disks. Further studies of the in- A nd outflow properties of CONs should also be conducted to investigate how these are connected to each other and to the CON phenomenon. The lower f25/f60 ratios in CONs as well as the results for the mid-infrared diagnostics investigated (EQW6.2 μm and s9.7 μm) are consistent with the notion that large dust columns gradually shift the radiation from the hot nucleus to longer wavelengths, making the mid- A nd far-infrared "photospheres"significantly cooler than the interior regions. Finally, to assess the importance of CONs in the context of galaxy evolution, it is necessary to extend this study to higher redshifts where (U)LIRGs are more common.
  •  
2.
  • Gorski, Mark, 1989, et al. (författare)
  • A spectacular galactic scale magnetohydrodynamic powered wind in ESO 320-G030
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Tidskriftsartikel (refereegranskat)abstract
    • How galaxies regulate nuclear growth through gas accretion by supermassive black holes (SMBHs) is one of the most fundamental questions in galaxy evolution. One potential way to regulate nuclear growth is through a galactic wind that removes gas from the nucleus. It is unclear whether galactic winds are powered by jets, mechanical winds, radiation, or via magnetohydrodynamic (MHD) processes. Compact obscured nuclei represent a significant phase of galactic nuclear growth. These galaxies hide growing SMBHs or unusual starbursts in their very opaque, extremely compact (r < 100 pc) centres. They are found in approximately 30% of the luminous and ultra-luminous infrared galaxy population. Here, we present high-resolution ALMA observations (∼30 mas, ∼5 pc) of ground-state and vibrationally excited HCN towards ESO 320-G030 (IRAS 11506-3851). ESO 320-G030 is an isolated luminous infrared galaxy known to host a compact obscured nucleus and a kiloparsec-scale molecular wind. Our analysis of these high-resolution observations excludes the possibility of a starburst-driven wind, a mechanically or energy driven active galactic nucleus wind, and exposes a molecular MDH wind. These results imply that the nuclear evolution of galaxies and the growth of SMBHs are similar to the growth of hot cores or protostars where gravitational collapse of the nuclear torus drives a MHD wind. These results mean galaxies are capable, in part, of regulating the evolution of their nuclei without feedback.
  •  
3.
  • Gorski, Mark, 1989, et al. (författare)
  • Discovery of methanimine (CH 2 NH) megamasers toward compact obscured galaxy nuclei
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first search for the 5.29 GHz methanimine (CH2NH) 110 - 111 transition toward a sample of galaxy nuclei. We target seven galaxies that host compact obscured nuclei (CONs) with the Karl G. Jansky Very Large Array. These galaxies are characterized by Compton-thick cores. CH2NH emission is detected toward six CONs. The brightness temperatures measured toward Arp 220 indicate maser emission. Isotropic luminosities of the CH2NH transition, from all sources where it is detected, exceed 1 Lpdbl and thus may be considered megamasers. We also detect formaldehyde (H2CO) emission toward three CONs. The isotropic CH2NH luminosities are weakly correlated with the infrared luminosity of the host galaxy and strongly correlated with OH megamaser luminosities from the same galaxies. Non-local thermodynamic equilibrium radiative transfer models suggest that the maser is pumped by the intense millimeter-to-submillimeter Our study suggests that CH2NH megamasers are linked to the nuclear processes within 100 pc of the Compton-thick nucleus within CONs.
  •  
4.
  • Gorski, Mark, 1989, et al. (författare)
  • The opaque heart of the galaxy IC 860: Analogous protostellar, kinematics, morphology, and chemistry
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 670
  • Tidskriftsartikel (refereegranskat)abstract
    • Compact Obscured Nuclei (CONs) account for a significant fraction of the population of luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs). These galaxy nuclei are compact, with radii of 10-100 pc, with large optical depths at submm and far-infrared wavelengths, and characterized by vibrationally excited HCN emission. It is not known what powers the large luminosities of the CON host galaxies because of the extreme optical depths towards their nuclei. CONs represent an extreme phase of nuclear growth, hiding either a rapidly accreting supermassive black hole or an abnormal mode of star formation. Regardless of their power source, the CONs allow us to investigate the processes of nuclear growth in galaxies. Here we apply principal component analysis (PCA) tomography to high-resolution (000:06) ALMA observations at frequencies 245 to 265 GHz of the nearby CON (59 Mpc) IC 860. PCA is a technique to unveil correlation in the data parameter space, and we apply it to explore the morphological and chemical properties of species in our dataset. The leading principal components reveal morphological features in molecular emission that suggest a rotating, infalling disk or envelope, and an outflow analogous to those seen in Galactic protostars. One particular molecule of astrochemical interest is methanimine (CH2NH), a precursor to glycine, three transitions of which have been detected towards IC 860.We estimate the average CH2NH column density towards the nucleus of IC 860 to be _1017cm2, with an abundance exceeding 108 relative to molecular hydrogen, using the rotation diagram method and non-LTE radiative transfer models. This CH2NH abundance is consistent with those found in hot cores of molecular clouds in the Milky Way. Our analysis suggests that CONs are an important stage of chemical evolution in galaxies, that are chemically and morphologically similar to Milky Way hot cores.
  •  
5.
  • Nishimura, Y., et al. (författare)
  • CON-quest: II. Spatially and spectrally resolved HCN/HCO + line ratios in local luminous and ultraluminous infrared galaxies
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 686
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Nuclear regions of ultraluminous and luminous infrared galaxies (U/LIRGs) are powered by starbursts and/or active galactic nuclei (AGNs). These regions are often obscured by extremely high columns of gas and dust. Molecular lines in the submillimeter windows have the potential to determine the physical conditions of these compact obscured nuclei (CONs). Aims. We aim to reveal the distributions of HCN and HCO+ emission in local U/LIRGs and investigate whether and how they are related to galaxy properties. Methods. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have conducted sensitive observations of the HCN J = 3-2 and HCO+J = 3-2 lines toward 23 U/LIRGs in the local Universe (z < 0.07) with a spatial resolution of ~0.3″ ( ~50-400 pc). Results. We detected both HCN and HCO+ in 21 galaxies, only HCN in one galaxy, and neither in one galaxy. The global HCN/HCO+ line ratios, averaged over scales of ~0.5-4 kpc, range from 0.4 to 2.3, with an unweighted mean of 1.1. These line ratios appear to have no systematic trend with bolometric AGN luminosity or star formation rate. The line ratio varies with position and velocity within each galaxy, with an average interquartile range of 0.38 on a spaxel-by-spaxel basis. In eight out of ten galaxies known to have outflows and/or inflows, we found spatially and kinematically symmetric structures of high line ratios. These structures appear as a collimated bicone in two galaxies and as a thin spherical shell in six galaxies. Conclusions. Non-LTE analysis suggests that the high HCN/HCO+ line ratio in outflows is predominantly influenced by the abundance ratio. Chemical model calculations indicate that the enhancement of HCN abundance in outflows is likely due to high-temperature chemistry triggered by shock heating. These results imply that the HCN/HCO+ line ratio can aid in identifying the outflow geometry when the shock velocity of the outflows is sufficiently high to heat the gas.
  •  
6.
  • Wethers, Clare, 1991, et al. (författare)
  • Double, double, toil, and trouble: The tails, bubbles, and knots of the local compact obscured nucleus galaxy NGC 4418
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 683
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Compact obscured nuclei (CONs) are an extremely obscured (NH2>1025 cm-2) class of galaxy nuclei thought to exist in 20-40 per cent of nearby (ultra-)luminous infrared galaxies While they have been proposed to represent a key phase of the active galactic nucleus (AGN) feedback cycle, the nature of these CONs -what powers them, their dynamics, and their impact on the host galaxy -remains unknown. Aims. This work analyses the galaxy-scale optical properties of the local CON NGC 4418 (z=0.00727). The key aims of the study are to understand the impact of nuclear outflows on the host galaxy and infer the power source of its CON. Through the mapping of the galaxy spectra and kinematics, we seek to identify new structures in NGC 4418 to ultimately reveal more about the CON's history, its impact on the host, and, more generally, the role CONs play in galaxy evolution. Methods. We present new, targeted integral field unit observations of the galaxy with the Multi-Unit Spectroscopic Explorer (MUSE). For the first time, we mapped the ionised and neutral gas components of the galaxy, along with their dynamical structure, to reveal several previously unknown features of the galaxy. Results. We confirm the presence of a previously postulated, blueshifted outflow along the minor axis of NGC 4418. We find this outflow to be decelerating and, for the first time, show it to extend in both directions from the nucleus. We report the discovery of two further outflow structures: a redshifted southern outflow connected to a tail of ionised gas surrounding the galaxy and a blueshifted bubble to the north. In addition to these features, we find the [OIII] emission reveals the presence of knots across the galaxy, which are consistent with regions of the galaxy that have been photoionised by an AGN. Conclusions. We identify several new features in NGC 4418, including a bubble structure, a reddened outflow, and [OIII] knot structures throughout the galaxy. We additionally confirm the presence of a bilateral blueshifted outflow along the minor axis. Based on the properties of these features, we conclude that the CON in NGC 4418 is most likely powered by AGN activity.
  •  
7.
  • Arnason, R. M., et al. (författare)
  • Distances to Galactic X-ray binaries with Gaia DR2
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 502:4, s. 5455-5470
  • Tidskriftsartikel (refereegranskat)abstract
    • Precise and accurate measurements of distances to Galactic X-ray binaries (XRBs) reduce uncertainties in the determination of XRB physical parameters. We have cross-matched the XRB catalogues of Liu, van Paradijs & van den Heuvel to the results of Gaia Data Release 2. We identify 86 XRBs with a Gaia candidate counterpart, of which 32 are low-mass X-ray binaries (LMXBs) and 54 are high-mass X-ray binaries (HMXBs). Distances to Gaia candidate counterparts are, on average, consistent with those measured by Hipparcos and radio parallaxes. When compared to distances measured by Gaia candidate counterparts, distances measured using Type I X-ray bursts are systematically larger, suggesting that these bursts reach only 50 percent of the Eddington limit. However, these results are strongly dependent on the prior assumptions used for estimating distance from the Gaia parallax measurements. Comparing positions of Gaia candidate counterparts for XRBs in our sample to positions of spiral arms in the Milky Way, we find that HMXBs exhibit mild preference for being closer to spiral arms; LMXBs exhibit mild preference for being closer to interarm regions. LMXBs do not exhibit any preference for leading or trailing their closest spiral arm. HMXBs exhibit a mild preference for trailing their closest spiral arm. The lack of a strong correlation between HMXBs and spiral arms may be explained by star formation occurring closer to the mid-point of the arms, or a time delay between star formation and HMXB formation manifesting as a spatial separation between HMXBs and the spiral arm where they formed.
  •  
8.
  • Bolatto, Alberto D., et al. (författare)
  • ALMA Imaging of a Galactic Molecular Outflow in NGC 4945
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 923:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the ALMA detection of molecular outflowing gas in the central regions of NGC 4945, one of the nearest starbursts and also one of the nearest hosts of an active galactic nucleus (AGN). We detect four outflow plumes in CO J= 3 - 2 at similar to 0.3 resolution that appear to correspond to molecular gas located near the edges of the known ionized outflow cone and its (unobserved) counterpart behind the disk. The fastest and brightest of these plumes has emission reaching observed line-of-sight projected velocities of over 450 km s(-1) beyond systemic, equivalent to an estimated physical outflow velocity v greater than or similar to 600 km s(-1) for the fastest emission. Most of these plumes have corresponding emission in HCN or HCO + J= 4 - 3. We discuss a kinematic model for the outflow emission where the molecular gas has the geometry of the ionized gas cone and shares the rotation velocity of the galaxy when ejected. We use this model to explain the velocities we observe, constrain the physical speed of the ejected material, and account for the fraction of outflowing gas that is not detected due to confusion with the galaxy disk. We estimate a total molecular mass outflow rate (M) over dot(mol) similar to 20 M-circle dot yr(-1) flowing through a surface within 100 pc of the disk midplane, likely driven by a combination of the central starburst and AGN.
  •  
9.
  • Emig, Kimberly L., et al. (författare)
  • Super Star Clusters in the Central Starburst of NGC 4945
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 903:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The nearby (3.8Mpc) galaxy NGC 4945 hosts a nuclear starburst and Seyfert type 2 active galactic nucleus (AGN). We use the Atacama Large Millimeter/submillimeter Array (ALMA) to image the 93 GHz (3.2 mm) free-free continuum and hydrogen recombination line emission (H40 alpha and H42 alpha) at 2.2 pc (0 12) resolution. Our observations reveal 27 bright, compact sources with FWHM sizes of 1.4-4.0 pc, which we identify as candidate super star clusters. Recombination line emission, tracing the ionizing photon rate of the candidate clusters, is detected in 15 sources, six of which have a significant synchrotron component to the 93 GHz continuum. Adopting an age of similar to 5Myr, the stellar masses implied by the ionizing photon luminosities are log(10) (M*/M-circle dot) approximate to 4.7-6.1. We fit a slope to the cluster mass distribution and find beta = -1.8 +/-.0.4. The gas masses associated with these clusters, derived from the dust continuum at 350 GHz, are typically an order of magnitude lower than the stellar mass. These candidate clusters appear to have already converted a large fraction of their dense natal material into stars and, given their small freefall times of similar to 0.05 Myr, are surviving an early volatile phase. We identify a pointlike source in 93 GHz continuum emission that is presumed to be the AGN. We do not detect recombination line emission from the AGN and place an upper limit on the ionizing photons that leak into the starburst region of Q(0).<.10(52) s(-1).
  •  
10.
  • Humire, Pedro, et al. (författare)
  • Methanol masers in NGC 253 with ALCHEMI
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 663
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Methanol masers of Class I (collisionally pumped) and Class II (radiatively pumped) have been studied in great detail in our Galaxy in a variety of astrophysical environments such as shocks and star-forming regions and are they are helpful to analyze the properties of the dense interstellar medium. However, the study of methanol masers in external galaxies is still in its infancy. Aims. Our main goal is to search for methanol masers in the central molecular zone (CMZ; inner 500 pc) of the nearby starburst galaxy NGC253. Methods. Covering a frequency range between 84 and 373 GHz (λ = 3.6-0.8 mm) at high angular (1."6 ∼ 27 pc) and spectral (∼8-9 km s-1) resolution with ALCHEMI (ALMA Comprehensive High-resolution Extragalactic Molecular Inventory), we have probed dierent regions across the CMZ of NGC253. In order to look for methanol maser candidates, we employed the rotation diagram method and a set of radiative transfer models. Results.We detect for the first time masers above 84 GHz in NGC253, covering an ample portion of the J-1 (J-1)0-E line series (at 84, 132, 229, and 278 GHz) and the J0 (J-1)1 A series (at 95, 146, and 198 GHz). This confirms the presence of the Class I maser line at 84 GHz, which was already reported, but now being detected in more than one location. For the J-1 (J-1)0-E line series, we observe a lack of Class I maser candidates in the central star-forming disk. Conclusions. The physical conditions for maser excitation in the J-1 (J-1)0-E line series can be weak shocks and cloud-cloud collisions as suggested by shock tracers (SiO and HNCO) in bi-symmetric shock regions located in the outskirts of the CMZ. On the other hand, the presence of photodissociation regions due to a high star-formation rate would be needed to explain the lack of Class I masers in the very central regions.
  •  
11.
  • Levy, Rebecca C., et al. (författare)
  • Outflows from Super Star Clusters in the Central Starburst of NGC 253
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 912:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Young massive clusters play an important role in the evolution of their host galaxies, and feedback from the high-mass stars in these clusters can have profound effects on the surrounding interstellar medium. The nuclear starburst in the nearby galaxy NGC 253 at a distance of 3.5 Mpc is a key laboratory in which to study star formation in an extreme environment. Previous high-resolution (1.9 pc) dust continuum observations from the Atacama Large Millimeter/submillimeter Array (ALMA) discovered 14 compact, massive super star clusters (SSCs) still in formation. We present here ALMA data at 350 GHz with 28 mas (0.5 pc) resolution. We detect blueshifted absorption and redshifted emission (P-Cygni profiles) toward three of these SSCs in multiple lines, including CS 7-6 and (HCN)-C-13 4-3, which represent direct evidence for previously unobserved outflows. The mass contained in these outflows is a significant fraction of the cluster gas masses, which suggests we are witnessing a short but important phase. Further evidence of this is the finding of a molecular shell around the only SSC visible at near-IR wavelengths. We model the P-Cygni line profiles to constrain the outflow geometry, finding that the outflows must be nearly spherical. Through a comparison of the outflow properties with predictions from simulations, we find that none of the available mechanisms completely explains the observations, although dust-reprocessed radiation pressure and O star stellar winds are the most likely candidates. The observed outflows will have a very substantial effect on the clusters' evolution and star formation efficiency.
  •  
12.
  • Levy, Rebecca C., et al. (författare)
  • The Morpho-kinematic Architecture of Super Star Clusters in the Center of NGC 253
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 935:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The center of the nearby galaxy NGC 253 hosts a population of more than a dozen super star clusters (SSCs) that are still in the process of forming. The majority of the star formation of the burst is concentrated in these SSCs, and the starburst is powering a multiphase outflow from the galaxy. In this work, we measure the 350 GHz dust continuum emission toward the center of NGC 253 at 47 mas (0.8 pc) resolution using data from the Atacama Large Millimeter/submillimeter Array. We report the detection of 350 GHz (dust) continuum emission in the outflow for the first time, associated with the prominent South-West streamer. In this feature, the dust emission has a width of approximate to 8 pc, is located at the outer edge of the CO emission, and corresponds to a molecular gas mass of similar to(8-17)x10(6) M (circle dot). In the starburst nucleus, we measure the resolved radial profiles, sizes, and molecular gas masses of the SSCs. Compared to previous work at the somewhat lower spatial resolution, the SSCs here break apart into smaller substructures with radii 0.4-0.7 pc. In projection, the SSCs, dust, and dense molecular gas appear to be arranged as a thin, almost linear, structure roughly 155 pc in length. The morphology and kinematics of this structure can be well explained as gas following x (2) orbits at the center of a barred potential. We constrain the morpho-kinematic arrangement of the SSCs themselves, finding that an elliptical, angular-momentum-conserving ring is a good description of both the morphology and kinematics of the SSCs.
  •  
13.
  • Mills, E. A. C., et al. (författare)
  • Clustered Star Formation in the Center of NGC 253 Contributes to Driving the Ionized Nuclear Wind
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 919:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new 3 mm observations of the ionized gas toward the nuclear starburst in the nearby (D similar to 3.5 Mpc) galaxy NGC 253. With ALMA, we detect emission from the H40 alpha and He40 alpha lines in the central 200 pc of this galaxy on spatial scales of similar to 4 pc. The recombination line emission primarily originates from a population of approximately a dozen embedded super star clusters in the early stages of formation. We find that emission from these clusters is characterized by electron temperatures ranging from 7000 to 10,000 K and measures an average singly ionized helium abundance Y (+) = 0.25 +/- 0.06, both of which are consistent with values measured for H ii regions in the center of the Milky Way. We also report the discovery of unusually broad line width recombination line emission originating from seven of the embedded clusters. We suggest that these clusters contribute to the launching of the large-scale hot wind observed to emanate from the central starburst. Finally, we use the measured recombination line fluxes to improve the characterization of overall embedded cluster properties, including the distribution of cluster masses and the fractional contribution of the clustered star formation to the total starburst, which we estimate is at least 50%.
  •  
14.
  • Sato, Mamiko, 1982, et al. (författare)
  • APEX and NOEMA observations of H 2 S in nearby luminous galaxies and the ULIRG Mrk 231: A possible relation between dense gas properties and molecular outflows
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 660
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In order to understand the evolution and feedback of active galactic nuclei (AGN) and star formation, it is important to use molecular lines as probes of physical conditions and chemistry. Aims. We use H2S to investigate the impact of starburst and AGN activity on the chemistry of the molecular interstellar medium in luminous infrared galaxies. Specifically, our aim is to search for evidence of shock enhancement of H2S related to galactic-scale mechanical feedback processes such as outflows. Methods. Using the APEX single-dish telescope, we have observed the 110 ~101 transition of ortho-H2S at 168 GHz towards the centres of 12 nearby luminous infrared galaxies. We have also observed the same line towards the ultra-luminous infrared galaxy Mrk 231 with the NOEMA interferometer. Results. We detected H2S towards NGC 253, NGC 1068, NGC 3256, NGC 4418, NGC 4826, NGC 4945, Circinus, M 83, and Mrk 231. Upper limits were obtained for NGC 1097, NGC 1377, and IC 860. We also detected line emission from HCN 2~1 in all galaxies in the APEX survey as well as HCO+, HNC, CH3CN, CH3OH, H2CS, HOC+, and SO in several of the sample galaxies. Mrk 231 has a rich 2 mm molecular spectrum and, in addition to H2S, we detect emission from HC3N, CH3OH, HC18O+, C2S, and CH3CCH. Four galaxies show elevated H2S emission relative to HCN: Circinus, NGC 3256, NGC 4826, and NGC 4418. We suggest that the high line ratios are caused by elevated H2S abundances in the dense gas. However, we do not find any clear connection between the H2S/HCN line intensity ratio and the presence (or speed) of molecular outflows in the sample galaxies. Therefore, H2S abundances do not seem to be globally affected by the large-scale outflows. In addition, the H2S/HCN line ratio is not enhanced in the line wings compared to the line core in Mrk 231. This suggests that H2S abundances do not increase in the dense gas in the outflow. However, we do find that the H2S and HCN luminosities (LH2S and LHCN) correlate well with the total molecular gas mass in the outflow, Moutflow(H2), in contrast to LCO and LHCO+. We also find that the line luminosity of H2S correlates with the total infrared luminosity in a similar way as that of H2O. Conclusions. We do not find any evidence of H2S abundance enhancements in the dense gas due to galactic-scale outflows in our sample galaxies, nor in the high-resolution study of Mrk 231. We discuss possible mechanisms behind the suggested H2S abundance enhancements in NGC 4418, Circinus, NGC 3256, and NGC 4826. These include radiative processes (for example X-rays or cosmic rays) or smaller-scale shocks. Further high-resolution and multi-transition studies are required to determine the cause behind the elevated H2S emission in these galaxies. We suggest that LH2S serves as a tracer of the dense gas content, similar to LHCN, and that the correlation between LH2S and Moutflow(H2) implies a relation between the dense gas reservoir and the properties and evolution of the molecular feedback. This potential link requires further study since it holds important keys to our understanding of how the properties of molecular outflows relate to those of their host galaxies. Finally, the similar infrared-correlation coefficients between H2S and H2O may indicate that they originate in the same regions in the galaxy: warm gas in shocks or irradiated by star formation or an AGN.
  •  
15.
  • Yang, Chentao, 1988, et al. (författare)
  • SUNRISE: The rich molecular inventory of high-redshift dusty galaxies revealed by broadband spectral line surveys
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 680
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the nature of high-redshift dusty galaxies requires a comprehensive view of their interstellar medium (ISM) and molecular complexity. However, the molecular ISM at high redshifts is commonly studied using only a few species beyond 12C16O, limiting our understanding. In this paper, we present the results of deep 3 mm spectral line surveys using the NOrthern Extended Millimeter Array (NOEMA) targeting two strongly lensed dusty galaxies observed when the Universe was less than 1.8 Gyr old: APM 08279+5255, a quasar at redshift z = 3.911, and NCv1.143 (H-ATLAS J125632.7+233625), a z = 3.565 starburst galaxy. The spectral line surveys cover rest-frame frequencies from about 330 to 550 GHz for both galaxies. We report the detection of 38 and 25 emission lines in APM 08279+5255 and NCv1.143, respectively. These lines originate from 17 species, namely CO, 13CO, C18O, CN, CCH, HCN, HCO+, HNC, CS, C34S, H2O, H3O+, NO, N2H+, CH, c-C3H2, and the vibrationally excited HCN and neutral carbon. The spectra reveal the chemical richness and the complexity of the physical properties of the ISM. By comparing the spectra of the two sources and combining the analysis of the molecular gas excitation, we find that the physical properties and the chemical imprints of the ISM are different: the molecular gas is more excited in APM 08279+5255, which exhibits higher molecular gas temperatures and densities compared to NCv1.143; the molecular abundances in APM 08279+5255 are akin to the values of local active galactic nuclei (AGN), showing boosted relative abundances of the dense gas tracers that might be related to high-temperature chemistry and/or the X-ray-dominated regions, while NCv1.143 more closely resembles local starburst galaxies. The most significant differences between the two sources are found in H2O: the 448 GHz ortho-H2O(423 - 330) line is significantly brighter in APM 08279+5255, which is likely linked to the intense far-infrared radiation from the dust powered by AGN. Our astrochemical model suggests that, at such high column densities, far-ultraviolet radiation is less important in regulating the ISM, while cosmic rays (and/or X-rays and shocks) are the key players in shaping the molecular abundances and the initial conditions of star formation. Both our observed CO isotopologs line ratios and the derived extreme ISM conditions (high gas temperatures, densities, and cosmic-ray ionization rates) suggest the presence of a top-heavy stellar initial mass function. From the ~330-550 GHz continuum, we also find evidence of nonthermal millimeter flux excess in APM 08279+5255 that might be related to the central supermassive black hole. Such deep spectral line surveys open a new window into the physics and chemistry of the ISM and the radiation field of galaxies in the early Universe.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy