SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gracia Espino Eduardo) "

Sökning: WFRF:(Gracia Espino Eduardo)

  • Resultat 1-25 av 72
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Annamalai, Alagappan, et al. (författare)
  • Influence of Sb5+ as a Double Donor on Hematite (Fe3+) Photoanodes for Surface-Enhanced Photoelectrochemical Water Oxidation
  • 2018
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 10:19, s. 16467-16473
  • Tidskriftsartikel (refereegranskat)abstract
    • To exploit the full potential of hematite (α-Fe2O3) as an efficient photoanode for water oxidation, the redox processes occurring at the Fe2O3/electrolyte interface need to be studied in greater detail. Ex situ doping is an excellent technique to introduce dopants onto the photoanode surface and to modify the photoanode/electrolyte interface. In this context, we selected antimony (Sb5+) as the ex situ dopant because it is an effective electron donor and reduces recombination effects and concurrently utilize the possibility to tuning the surface charge and wettability. In the presence of Sb5+ states in Sb-doped Fe2O3 photoanodes, as confirmed by X-ray photoelectron spectroscopy, we observed a 10-fold increase in carrier concentration (1.1 × 1020 vs 1.3 × 1019 cm–3) and decreased photoanode/electrolyte charge transfer resistance (∼990 vs ∼3700 Ω). Furthermore, a broad range of surface characterization techniques such as Fourier-transform infrared spectroscopy, ζ-potential, and contact angle measurements reveal that changes in the surface hydroxyl groups following the ex situ doping also have an effect on the water splitting capability. Theoretical calculations suggest that Sb5+ can activate multiple Fe3+ ions simultaneously, in addition to increasing the surface charge and enhancing the electron/hole transport properties. To a greater extent, the Sb5+- surface-doped determines the interfacial properties of electrochemical charge transfer, leading to an efficient water oxidation mechanism.
  •  
3.
  • Annamalai, Alagappan, et al. (författare)
  • Sn/Be Sequentially co-doped Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation : Effect of Be2+ as co-dopant
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • For ex-situ co-doping methods, sintering at high temperatures enables rapid diffusion of Sn4+ and Be2+ dopants into hematite (alpha-Fe2O3) lattices, without altering the nanorod morphology or damaging their crystallinity. Sn/Be co-doping results in a remarkable enhancement in photocurrent (1.7 mA/cm(2)) compared to pristine alpha-Fe2O3 (0.7 mA/cm(2)), and Sn4+ mono-doped alpha-Fe2O3 photoanodes (1.0 mA/cm(2)). From first-principles calculations, we found that Sn4+ doping induced a shallow donor level below the conduction band minimum, which does not contribute to increase electrical conductivity and photocurrent because of its localized nature. Additionally, Sn4+-doping induce local micro-strain and a decreased Fe-O bond ordering. When Be2+ was co-doped with Sn4+-doped alpha-Fe2O3 photoanodes, the conduction band recovered its original state, without localized impurities peaks, also a reduction in micro-strain and increased Fe-O bond ordering is observed. Also the sequence in which the ex-situ co-doping is carried out is very crucial, as Be/Sn co-doping sequence induces many under-coordinated O atoms resulting in a higher micro-strain and lower charge separation efficiency resulting undesired electron recombination. Here, we perform a detailed systematic characterization using XRD, FESEM, XPS and comprehensive electrochemical and photoelectrochemical studies, along with sophisticated synchrotron diffraction studies and extended X-ray absorption fine structure.
  •  
4.
  • Barzegar, Hamid Reza, 1977-, et al. (författare)
  • C60/Collapsed Carbon Nanotube Hybrids : A Variant of Peapods
  • 2015
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 15:2, s. 829-834
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine a variant of so-called carbon nanotube peapods by packing C60 molecules inside the open edge ducts of collapsed carbon nanotubes. C60 insertion is accomplished through a facile single-step solution-based process. Theoretical modeling is used to evaluate favorable low-energy structural configurations. Overfilling of the collapsed tubes allows infiltration of C60 over the full cross-section of the tubes and consequent partial or complete reinflation, yielding few-wall, large diameter cylindrical nanotubes packed with crystalline C60 solid cores.
  •  
5.
  • Barzegar, Hamid Reza, et al. (författare)
  • Electrostatically Driven Nanoballoon Actuator
  • 2016
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 16:11, s. 6787-6791
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.
  •  
6.
  • Barzegar, Hamid Reza, et al. (författare)
  • Nitrogen Doping Mechanism in Small Diameter Single-Walled Carbon Nanotubes : Impact on Electronic Properties and Growth Selectivity
  • 2013
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 117:48, s. 25805-25816
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitrogen doping in carbon nanostructures has attracted interest for more than a decade, and recent implementation of such structures in energy conversion systems has boosted the interest even more. Despite numerous studies, the structural conformation and stability of nitrogen functionalities in small diameter single-walled carbon nanotubes (SWNTs), and the impact of these functionalities on the electronic and mechanical properties of the SWNTs, are incomplete. Here we report a detailed study on nitrogen doping in SWNTs with diameters in the range of 0.8?1.0 nm, with well-defined chirality. We show that the introduction of nitrogen in the carbon framework significantly alters the stability of certain tubes, opening for the possibility to selectively grow nitrogen-doped SWNTs with certain chirality and diameter. At low nitrogen concentration, pyridinic functionalities are readily incorporated and the tubular structure is well pertained. At higher concentrations, pyrrolic functionalities are formed, which leads to significant structural deformation of the nanotubes and hence a stop in growth of crystalline SWNTs. Raman spectroscopy is an important tool to understand guest atom doping and electronic charge transfer in SWNTs. By correlating the influence of defined nitrogen functionalities on the electronic properties of SWNTs with different chirality, we make precise interpretation of experimental Raman data. We show that the previous interpretation of the double-resonance G?-peak in many aspects is wrong and instead can be well-correlated to the type of nitrogen doping of SWNTs originating from the p- or n-doping nature of the nitrogen incorporation. Our results are supported by experimental and theoretical data.
  •  
7.
  • Barzegar, Hamid Reza, et al. (författare)
  • Spontaneous twisting of a collapsed carbon nanotube
  • 2017
  • Ingår i: Nano Reseach. - : Tsinghua University Press. - 1998-0124 .- 1998-0000. ; 10:6, s. 1942-1949
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the collapsing and subsequent spontaneous twisting of a carbon nanotube by in situ transmission electron microscopy (TEM). A custom-sized nanotube is first created in the microscope by selectively extracting shells from a parent multi-walled tube. The few-walled, large-diameter daughter nanotube is driven to collapse via mechanical stimulation, after which the ribbon-like collapsed tube spontaneously twists along its long axis. In situ diffraction experiments fully characterize the uncollapsed and collapsed tubes. The experimental observations and associated theoretical analysis indicate that the origin of the twisting is compressive strain.
  •  
8.
  • Das, Lakshmi, et al. (författare)
  • NiO thin films fabricated using spray-pyrolysis technique : structural and optical characterization and ultrafast charge dynamics studies
  • 2024
  • Ingår i: Journal of Physics D. - : Institute of Physics Publishing (IOPP). - 0022-3727 .- 1361-6463. ; 57:38
  • Tidskriftsartikel (refereegranskat)abstract
    • Nickel (II) oxide, NiO, is a wide band gap Mott insulator characterized by strong Coulomb repulsion between d-electrons and displays antiferromagnetic order at room temperature. NiO has gained attention in recent years as a very promising candidate for applications in a broad set of areas, including chemistry and metallurgy to spintronics and energy harvesting. Here, we report on the fabrication of polycrystalline NiO using spray-pyrolysis technique, which is a deposition technique able to produce quite uniform films of pure and crystalline materials without the need of high vacuum or inert atmospheres. The composition and structure of the NiO thin films were then studied using x-ray diffraction, and atomic force and scanning electron microscopies (SEM). The phononic and magnonic properties of the NiO thin films were also studied via Raman spectroscopy, and the ultrafast electron dynamics by using optical pump probe spectroscopy. We found that the NiO samples display the same phonon and magnon excitations expected for single crystal NiO at room temperature, and that electron dynamics in our system is like those of previously reported NiO mono- and polycrystalline systems synthesized using different techniques. These results prove that spray-pyrolysis can be used as affordable and large-scale fabrication technique to synthesize strongly correlated materials for a large set of applications.
  •  
9.
  • Ekeroth, Sebastian, et al. (författare)
  • Magnetically Collected Platinum/Nickel Alloy Nanoparticles as Catalysts for Hydrogen Evolution
  • 2021
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 4:12, s. 12957-12965
  • Tidskriftsartikel (refereegranskat)abstract
    • The hydrogen evolution reaction (HER) is a key process in electrochemical water splitting. To lower the cost and environmental impact of this process, it is highly motivated to develop electrocatalysts with low or no content of noble metals. Here, we report on an ingenious synthesis of hybrid PtxNi1-x electrocatalysts in the form of a nanoparticle-nanonetwork structure with very low noble metal content. The structure possesses important features such as good electrical conductivity, high surface area, strong interlinking, and substrate adhesion, which render an excellent HER activity. Specifically, the best performing Pt0.05Ni0.95 sample demonstrates a Tafel slope of 30 mV dec-1 in 0.5 M H2SO4 and an overpotential of 20 mV at a current density of 10 mA cm-2 with high stability. The impressive catalytic performance is further rationalized in a theoretical study, which provides insight into the mechanism on how such small platinum content can allow for close-to-optimal adsorption energies for hydrogen.
  •  
10.
  • Ekspong, Joakim, et al. (författare)
  • Hydrogen Evolution Reaction Activity of Heterogeneous Materials : A Theoretical Model
  • 2020
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 124:38, s. 20911-20921
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we present a new comprehensive methodology to quantify the catalytic activity of heterogeneous materials for the hydrogen evolution reaction (HER) using ab initio simulations. The model is composed of two parts. First, the equilibrium hydrogen coverage is obtained by an iterative evaluation of the hydrogen adsorption free energies (ΔGH) using density functional theory calculations. Afterward, the ΔGH are used in a microkinetic model to provide detailed characterizations of the entire HER considering all three elementary steps, i.e., the discharge, atom + ion, and combination reactions, without any prior assumptions of rate-determining steps. The microkinetic model takes the equilibrium and potential-dependent characteristics into account, and thus both exchange current densities and Tafel slopes are evaluated. The model is tested on several systems, from polycrystalline metals to heterogeneous molybdenum disulfide (MoS2), and by comparing to experimental data, we verify that our model accurately predicts their experimental exchange current densities and Tafel slopes. Finally, we present an extended volcano plot that correlates the electrical current densities of each elementary reaction step to the coverage-dependent ΔGH.
  •  
11.
  •  
12.
  • Ekspong, Joakim, et al. (författare)
  • Stabilizing Active Edge Sites in Semicrystalline Molybdenum Sulfide by Anchorage on Nitrogen-Doped Carbon Nanotubes for Hydrogen Evolution Reaction
  • 2016
  • Ingår i: Advanced Functional Materials. - : Wiley-VCH Verlagsgesellschaft. - 1616-301X .- 1616-3028. ; 26:37, s. 6766-6776
  • Tidskriftsartikel (refereegranskat)abstract
    • Finding an abundant and cost-effective electrocatalyst for the hydrogen evolu-tion reaction (HER) is crucial for a global production of hydrogen from water electrolysis. This work reports an exceptionally large surface area hybrid catalyst electrode comprising semicrystalline molybdenum sulfi de (MoS 2+ x) catalystattached on a substrate based on nitrogen-doped carbon nanotubes (N-CNTs), which are directly grown on carbon fiber paper (CP). It is shown here that nitrogen-doping of the carbon nanotubes improves the anchoring of MoS 2+ xcatalyst compared to undoped carbon nanotubes and concurrently stabilizes a semicrystalline structure of MoS 2+ x with a high exposure of active sites for HER. The well-connected constituents of the hybrid catalyst are shown to facilitate electron transport and as a result of the good attributes, the MoS 2+ x/N-CNT/CPelectrode exhibits an onset potential of −135 mV for HER in 0.5 M H2SO4, a Tafel slope of 36 mV dec −1, and high stability at a current density of −10 mA cm −2.
  •  
13.
  • Ekspong, Joakim, et al. (författare)
  • Stable Sulfur‐Intercalated 1T′ MoS2 on Graphitic Nanoribbons as Hydrogen Evolution Electrocatalyst
  • 2018
  • Ingår i: Advanced Functional Materials. - : WILEY-VCH VERLAG GMBH. - 1616-301X .- 1616-3028. ; 28:46
  • Tidskriftsartikel (refereegranskat)abstract
    • The metastable 1T′ polymorph of molybdenum disulfide (MoS2) has shown excellent catalytic activity toward the hydrogen evolution reaction (HER) in water‐splitting applications. Its basal plane exhibits high catalytic activity comparable to the edges in 2H MoS2 and noble metal platinum. However, the production and application of this polymorph are limited by its lower energetic stability compared to the semiconducting 2H MoS2 phase. Here, the production of stable intercalated 1T′ MoS2 nanosheets attached on graphitic nanoribbons is reported. The intercalated 1T′ MoS2 exhibits a stoichiometric S:Mo ratio of 2.3 (±0.1):1 with an expanded interlayer distance of 10 Å caused by a sulfur‐rich intercalation agent and is stable at room temperature for several months even after drying. The composition, structure, and catalytic activity toward HER are investigated both experimentally and theoretically. It is concluded that the 1T′ MoS2 phase is stabilized by the intercalated agents, which further improves the basal planes′ catalytic activity toward HER.
  •  
14.
  • Ekspong, Joakim, et al. (författare)
  • Surface activation of graphene nanoribbons for oxygen reduction reaction by nitrogen doping and defect engineering : An ab initio study
  • 2018
  • Ingår i: Carbon. - : Elsevier. - 0008-6223 .- 1873-3891. ; 137, s. 349-357
  • Tidskriftsartikel (refereegranskat)abstract
    • Introducing heteroatoms and creating structural defects on graphene is a common and rather successful strategy to transform its inert basal plane into an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR). However, the intricate atomic configuration of defective graphenes difficult their optimization as ORR electrocatalysts, where not only a large density of active sites is desirable, but also excellent electrical conductivity is required. Therefore, we used density functional theory to investigate the current-voltage characteristics and the catalytic active sites towards ORR of nitrogen-doped and defective graphene by using 8 zig-zag graphene nanoribbons as model systems. Detailed ORR catalytic activity maps are created for ten different systems showing the distribution of catalytic hot spots generated by each defect. Subsequently, the use of both current-voltage characteristics and catalytic activity maps allow to exclude inefficient systems that exhibit either low electrical conductivity or have adsorption energies far from optimal. Our study highlights the importance of considering not only the interaction energy of reaction intermediates to design electrocatalysts, but also the electrical conductivity of such configurations. We believe that this work is important for future experimental studies by providing insights on the use of graphene as a catalyst towards the ORR reaction. 
  •  
15.
  • Ekspong, Joakim, et al. (författare)
  • Theoretical Analysis of Surface Active Sites in Defective 2H and 1T ' MoS2 Polymorphs for Hydrogen Evolution Reaction : Quantifying the Total Activity of Point Defects
  • 2020
  • Ingår i: Advanced Theory and Simulations. - : Wiley-VCH Verlagsgesellschaft. - 2513-0390. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Defect engineering is a common and promising strategy to improve the catalytic activity of layered structures such as MoS2, where in particular the 2H and 1T ' polymorphs have been under intense study for their activity toward the hydrogen evolution reaction. However, the large variety of defects, each with its own distinct and usually unknown effects, complicates the design and optimization of such defective materials. Therefore, it is relevant to characterize in detail the effect of individual defects and to be able to combine these observations to describe more complex materials, such as those seen experimentally. Therefore, nine point defects (antisites defects and vacancies) are theoretically studied on single layer 1T, 1T ', and 2H MoS2 polymorphs, and the variation and spatial distribution in the active sites are identified. It is found that all defective 1T ' monolayers exhibit an increase in the exchange current density of at least 2.3 times when compared to pristine 1T ' MoS2, even if a reduced number of active sites are observed. The results are later used to propose a methodology to study materials containing a mixture of crystal phases, or other alterations that cause inhomogeneous changes in the activity of catalytic sites.
  •  
16.
  • Enevold, Jenny, et al. (författare)
  • Tunable two-dimensional patterning of a semiconducting Nanometer-Thin C60 fullerene film using a spatial light modulator
  • 2020
  • Ingår i: ACS Applied Nano Materials. - : Acoustical Society of America (ASA). - 2574-0970. ; 3:6, s. 2574-0970
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The photochemical coupling of fullerene molecules into covalently connected oligomeric or polymeric structures can result in drastically lowered solubility in common solvents with retained semiconductor properties. Here, we exploit this combination of properties for the utilization of fullerenes as a negative photoresist material with electronic functionality. Specifically, we develop an easily tunable exposure system, essentially comprising a laser and a computer-controlled spatial light modulator (SLM) featuring >8 million independently controlled pixels, for the spatially selective photochemical transformation of nanometer-thin C60 fullerene films. With a carefully designed laser-SLM-exposure/solvent-development cycle, we are able to realize well-resolved two-dimensional hexagonal or square patterns of circular C60 microdots with a center-to-center distance of 1–5 μm and a maximum thickness of 20–35 nm over several square-millimeter-sized areas on a substrate. The functionality of such a hexagonal C60 pattern was demonstrated by its inclusion in between the transparent electrode and the active material in a light-emitting electrochemical cell, which featured an enhanced light output by >50% in comparison to a reference device void of the patterned C60 layer.
  •  
17.
  • Fan, Junpeng, et al. (författare)
  • Solid-state synthesis of few-layer cobalt-doped MoS2 with CoMoS phase on nitrogen-doped graphene driven by microwave irradiation for hydrogen electrocatalysis
  • 2020
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 10:56, s. 34323-34332
  • Tidskriftsartikel (refereegranskat)abstract
    • The high catalytic activity of cobalt-doped MoS2 (Co–MoS2) observed in several chemical reactions such as hydrogen evolution and hydrodesulfurization, among others, is mainly attributed to the formation of the CoMoS phase, in which Co occupies the edge-sites of MoS2. Unfortunately, its production represents a challenge due to limited cobalt incorporation and considerable segregation into sulfides and sulfates. We, therefore, developed a fast and efficient solid-state microwave irradiation synthesis process suitable for producing thin Co–MoS2 flakes (∼3–8 layers) attached on nitrogen-doped reduced graphene oxide. The CoMoS phase is predominant in samples with up to 15 at% of cobalt, and only a slight segregation into cobalt sulfides/sulfates is noticed at larger Co content. The Co–MoS2 flakes exhibit a large number of defects resulting in wavy sheets with significant variations in interlayer distance. The catalytic performance was investigated by evaluating the activity towards the hydrogen evolution reaction (HER), and a gradual improvement with increased amount of Co was observed, reaching a maximum at 15 at% with an overpotential of 197 mV at −10 mA cm−2, and a Tafel slope of 61 mV dec−1. The Co doping had little effect on the HER mechanism, but a reduced onset potential and charge transfer resistance contributed to the improved activity. Our results demonstrate the feasibility of using a rapid microwave irradiation process to produce highly doped Co–MoS2 with predominant CoMoS phase, excellent HER activity, and operational stability.
  •  
18.
  • Fan, Junpeng, et al. (författare)
  • β-Mo2C Nanoparticles Produced by Carburization of Molybdenum Oxides with Carbon Black under Microwave Irradiation for Electrocatalytic Hydrogen Evolution Reaction
  • 2021
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 4:11, s. 12270-12277
  • Tidskriftsartikel (refereegranskat)abstract
    • The synthesis of electrochemically active β-Mo2C nanoparticles for hydrogen production was achieved by a fast and energy-efficient microwave-assisted carburization process from molybdenum oxides and carbon black. With the use of microwave-based production methods, we aim to reduce the long-time high-temperature treatments and the use of hazardous gases often seen in traditional molybdenum carbide synthesis processes. In our process, carbon black not only serves as a carbon source but also as a susceptor (microwave absorber) and conductive substrate. The irradiation power, reaction time, and Mo:C ratio were optimized to achieve the highest electrocatalytic performance toward hydrogen production in an acidic electrolyte. A complete transformation of MoO3 to β-Mo2C nanoparticles and an additional graphitization of the carbon black matrix were achieved at 1000 W, 600 s, and Mo:C ratio above 1:7.5. Under these conditions, the optimized composite exhibited an excellent HER performance (η10 = 156 mV, Tafel slope of 53 mV·dec–1) and large turnover frequency per active site (3.09 H2·s–1 at an overpotential of 200 mV), making it among the most efficient non-noble-metal catalysts. The excellent activity was achieved thanks to the abundance of β-Mo2C nanoparticles, the intimate nanoparticle-substrate interface, and enhanced electron transport toward the carbon black matrix. We also investigated the flexibility of the synthesis method by adding additional Fe or V as secondary transition metals, as well as the effect of the substrate.
  •  
19.
  • Gracia-Espino, Eduardo (författare)
  • Behind the Synergistic Effect Observed on Phosphorus Nitrogen Codoped Graphene during the Oxygen Reduction Reaction
  • 2016
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 120:49, s. 27849-27857
  • Tidskriftsartikel (refereegranskat)abstract
    • Ab initio calculations are performed to investigate how the simultaneous introduction of phosphorus and nitrogen into graphene modifies the availability and spatial distribution of catalytic active sites for an oxygen reduction reaction (ORR). A phosphoryl group (R-3-P=0) is selected as a representative for the phosphorus doping, and the ORR is studied under alkaline conditions where a 4e(-) mechanism is used to determine the limiting step and overpotential (eta(ORR)) along the entire graphene surface. A scanning procedure is used to construct eta(ORR) maps for pristine-, N-, P-, and diverse PN codoped graphenes. The results indicate that a single N (P) atom activates up to 17 (3) C atoms, while the simultaneous introduction of P and N activates up to 55 C atoms equivalent to 57% of the surface. Additionally, PN codoped graphenes reveals that the relative location of both dopants has significant effects on the ORR performance, where a P N separation distance of at least 4 angstrom minimizes the localization of electronic states on the neighboring C atoms and improves the quantity and distribution of active sites. The results shows the importance of designing synthesis procedures to control the dopant concentration and spatial distribution to maximize the number of active sites. Furthermore, the eta(ORR) maps reveal features that could be obtained by scanning tunneling microscopy allowing us to experimentally identify and possibly quantify the catalytic active sites on carbon-based materials.
  •  
20.
  • Gracia-Espino, Eduardo, et al. (författare)
  • Coronene-based graphene nanoribbons insulated by boron nitride nanotubes : electronic properties of the hybrid structure
  • 2018
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 3:10, s. 12930-12935
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a theoretical study on the formation of graphene nanoribbons-via polymerization of coronene molecules-inside the inner cavity of boron nitride nanotubes. We examine the electronic property of the hybrid system, and we show that the boron nitride nanotube does not significantly alter the electronic properties of the encapsulated graphene nanoribbon. Motivated by previous experimental works, we examine graphene nanoribbons with two different widths and investigate probable scenarios for defect formation and/or twisting of the resulting graphene nanoribbons and their effect on the electronic properties of the hybrid system.
  •  
21.
  • Gracia-Espino, Eduardo, et al. (författare)
  • Electron transport study on functionalized armchair graphene nanoribbons : DFT calculations
  • 2016
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 6:26, s. 21954-21960
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum transport studies are performed on doped and functionalized 8- and 11-armchair graphene nanoribbons (aGNRs) by means of density functional theory. Substitutional doping is performed by introducing boron, nitrogen, oxygen, silicon, phosphorus, and sulfur atoms within the lattice of the aGNRs. Other functional groups such as borane, amine, hydroxyl, thiol, silane, silene, phosphine, and phosphorane groups are also introduced at the nanoribbon's edge. The dopant position and the nanoribbon's width strongly influence the current-voltage characteristics, and generally, the narrow 8-aGNRs and edge-doped 11-aGNRs show deteriorated transport properties, mainly due to the formation of irregular edges that create highly localized states disrupting several conducting bands. On the other hand, the inside-doped 11-aGNRs are barely affected, mainly because these systems preserve the edge's structure, thus edge conduction bands still contribute to the electron transport. Our results suggest that wider graphene nanoribbons could be functionalized at the inner sections without significantly compromising their transport characteristics while retaining the chemical reactivity that characterize doped nanocarbons. Such characteristics are highly desirable in fuel cells where doped graphene is used as a catalyst support or as a metal-free catalyst.
  •  
22.
  • Gracia-Espino, Eduardo, et al. (författare)
  • Fabrication of One-Dimensional Zigzag [6,6]-Phenyl-C-61-Butyric Acid Methyl Ester Nanoribbons from Two-Dimensional Nanosheets
  • 2015
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 9:10, s. 10516-10522
  • Tidskriftsartikel (refereegranskat)abstract
    • One-dimensional (10) zigzag [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) nanoribbons are produced by folding two-dimensional ultrathin PCBM nanosheets in a simple solvent process. The unique 1D PCBM nanostructures exhibit uniform width of 3.8 +/- 0.3 nm, equivalent to four PCBM molecules, and lengths of 20-400 nm. These nanoribbons show well-defined crystalline structure, comprising PCBM molecules in a hexagonal arrangement without trapped solvent molecules. First-principle calculations and detailed experimental characterization provide an insight into the structure and formation mechanism of the 1D PCBM nanoribbons. Given their dimensions and physical properties, we foresee that these nanostructures should be ideal as acceptor material in organic solar cells.
  •  
23.
  • Gracia-Espino, Eduardo, et al. (författare)
  • Improved oxygen reduction performance of Pt–Ni nanoparticles by adhesion on nitrogen-doped graphene
  • 2014
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 118:5, s. 2804-2811
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene and its derivatives hold great potential as support for nanocatalyst in various energy applications, such as fuel cells, batteries, and capacitors. In this work, we used density functional theory to analyze substrate effect on the electrocatalytic activity of Pt–Ni bimetallic nanoparticles for oxygen reduction reaction (ORR). The dissociative mechanism is used to evaluate the ORR performance (energy barrier for O2 dissociation, free energy of intermediates, d-band center, overpotential, and electrochemical activity) for a Pt–Ni core–shell-like nanoparticle (PtNiCS) deposited on nondefective graphene (GS) or nitrogen-doped graphene (N-GS). The electronic and catalytic properties of PtNiCS on N-GS designate N-doped graphene as the best substrate to use for ORR, showing better interaction with the bimetallic cluster, improved charge transfer between constitutes, and a superior ORR performance when compared to PtNiCS on GS. The N-GS has a significant effect in reducing the energy barrier for O2 dissociation and decrease the energetic stability of HO* intermediates, resulting in enhanced ORR activity compared with the PtNiCS on GS. In addition, the strong interaction between PtNiCS cluster and N-GS substrate may lead to an improved long-term stability of the catalytic particle during ORR cycles.
  •  
24.
  • Gracia-Espino, Eduardo, et al. (författare)
  • Novel carbon-based nanomaterials : graphene and graphitic nanoribbons
  • 2013
  • Ingår i: Handbook of advanced ceramics. - Oxford : Elsevier. - 9780123854698 - 9780123854704 ; , s. 61-87
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • The fascinating characteristic of carbon atoms to create multiple orbital hybridizations (e.g., sp, sp2, or sp3) provides the possibility to synthesize one-, two-, and three-dimensional carbon nanostructures with unique physical–chemical properties. In this way, the two-dimensional (2D) carbon-atomic layered crystal (graphene) and graphitic nanoribbons have attracted the attention of several scientific groups around the world due to their novel and unusual physicochemical properties. The relative simplicity of the Novoselov–Geim method to extract a single graphene layer along with the fascinating properties of graphene, such as the linear E(k) electronic structure in monolayer graphene, has stimulated extensive experimental and theoretical studies. This chapter reviews experimental and theoretical work on graphene with special attention to graphene nanoribbons. We focus on the role of topological defects, edge chirality, and chemical doping on the electronic, transport, and structural properties of graphene and graphene nanoribbons. We also review different synthesis techniques, such as chemical vapor deposition, chemical routes, and nanotube exfoliation, to obtain carbon nanoribbons. We also summarize common characterization techniques used for graphene materials, such as scanning electron microscopy, high resolution electron microscopy, scanning tunneling spectroscopy, near edge X-ray absorption fine structure, electron spin resonance, and Raman spectroscopy techniques. Edge-state characterization and the special magnetic properties of edges are also reviewed. In addition, first-principles density functional theory calculations of the electronic and transport properties of doped armchair nanoribbons are described. Finally, we discuss the future perspectives of these graphene-like materials, including applications in electronic devices, composites, catalysts, and energy storage devices.
  •  
25.
  • Gracia-Espino, Eduardo, et al. (författare)
  • Self-assembly synthesis of decorated nitrogen-doped carbon nanotubes with ZnO nanoparticles : anchoring mechanism and the effects of sulfur
  • 2015
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 119:1, s. 741-747
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid systems consisting of ZnO nanoparticles (ZnO-NPs) anchored on the surface of nitrogen-doped multiwalled carbon nanotubes (CNX-MWNTs) have been synthesized. The anchoring process consists of a self-assembly method involving the mixing of CNX-MWNTs in a solution with N,N-dimethylformamide, zinc acetylacetonate, and thiophene. Thiophene is used as a capping agent for controlling the size and distribution of ZnO-NPs, as well as an anchoring element between the NPs and the nanotube walls. Scanning and transmission electron microscopy characterization revealed that the ZnO-NPs are homogeneously deposited on the surface of CNX-MWNTs. X-ray powder diffraction analysis demonstrated that the ZnO-NPs exhibit a Wurtzite-type crystal structure with an average particle diameter of 5 nm. We also show that the ZnO-NPs do not exhibit a preferential growth direction with respect to the nanotube surface, and their formation is simply controlled by the concentration of the passivating agent. Density functional theory (DFT) calculations confirm that sulfur (from thiophene) is an effective passivating agent for ZnO by preferentially binding low-coordinated Zn atoms. However, the ZnO-NPs could be chemically bonded to the nanotubes through oxygen atoms close to the nitrogenated sites of the tubes. Our results also demonstrate that isolated and sulfur passivated ZnO-NPs become magnetic and exhibit half-metallicity (electronic states with only one spin component are present at the Fermi level). Sulfur-passivated ZnO retains these properties even after forming ZnO/CNX-MWNT hybrid materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 72
Typ av publikation
tidskriftsartikel (65)
annan publikation (3)
doktorsavhandling (2)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (64)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Gracia-Espino, Eduar ... (70)
Wågberg, Thomas, 197 ... (22)
Wågberg, Thomas (20)
Barzegar, Hamid Reza (14)
Hu, Guangzhi (13)
Sharifi, Tiva (12)
visa fler...
Ekspong, Joakim (11)
Sandström, Robin (10)
Piñeiro-García, Alex ... (8)
Edman, Ludvig, 1967- (7)
Shchukarev, Andrey (7)
Boulanger, Nicolas (7)
Terrones, Mauricio (6)
Tang, Shi (5)
Annamalai, Alagappan (5)
Larsen, Christian (5)
Miranda la Hera, Vla ... (5)
Jia, Xueen (5)
Perivoliotis, Dimitr ... (5)
Zettl, Alex (4)
Koroidov, Sergey (4)
Lindh, E Mattias, 19 ... (3)
Ràfols-Ribé, Joan (3)
Yan, Aiming (3)
Nitze, Florian, 1981 ... (3)
Wang, Jia (3)
Helmersson, Ulf (2)
Wang, Le (2)
Yang, Guang (2)
Mikkola, Jyri-Pekka (2)
Boily, Jean-Francois (2)
Brenning, Nils (2)
Kordás, Krisztian (2)
Messinger, Johannes (2)
Lee, Hyun Hwi (2)
Choi, Sun Hee (2)
Lee, Su Yong (2)
Subramanian, Arunpra ... (2)
Jang, Jum Suk (2)
Edman, Ludvig (2)
Lundberg, Petter (2)
Coh, Sinisa (2)
Dunn, Gabriel (2)
Louie, Steven G. (2)
Cohen, Marvin L. (2)
Boyd, Robert (2)
Zhang, Xiaoying (2)
Ekeroth, Sebastian (2)
Sharma, Sachin (2)
Kwong, Wai Ling (2)
visa färre...
Lärosäte
Umeå universitet (71)
Uppsala universitet (5)
Stockholms universitet (4)
Linköpings universitet (3)
RISE (2)
Kungliga Tekniska Högskolan (1)
visa fler...
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (72)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (64)
Teknik (26)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy