SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grasha Kathryn) "

Sökning: WFRF:(Grasha Kathryn)

  • Resultat 1-25 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Larson, Kirsten L., et al. (författare)
  • Multiscale stellar associations across the star formation hierarchy in PHANGS-HST nearby galaxies : methodology and properties
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 523:4, s. 6061-6081
  • Tidskriftsartikel (refereegranskat)abstract
    • We develop a method to identify and determine the physical properties of stellar associations using Hubble Space Telescope (HST) NUV−U−B−V−I imaging of nearby galaxies from the Physics at High Angular Resolution in Nearby GalaxieS with the Hubble Space Telescope (PHANGS–HST) survey. We apply a watershed algorithm to density maps constructed from point source catalogues Gaussian smoothed to multiple physical scales from 8 to 64 pc. We develop our method on two galaxies that span the distance range in the PHANGS–HST sample: NGC 3351 (10 Mpc) and NGC 1566 (18 Mpc). We test our algorithm with different parameters such as the choice of detection band for the point source catalogue (NUV or V), source density image filtering methods, and absolute magnitude limits. We characterize the properties of the resulting multiscale associations, including sizes, number of tracer stars, number of associations, and photometry, as well as ages, masses, and reddening from spectral energy distribution fitting. Our method successfully identifies structures that occupy loci in the UBVI colour–colour diagram consistent with previously published catalogues of clusters and associations. The median ages of the associations increase from log(age/yr) = 6.6 to log(age/yr) = 6.9 as the spatial scale increases from 8 to 64 pc for both galaxies. We find that the youngest stellar associations, with ages <3 Myr, indeed closely trace H II regions in H α imaging, and that older associations are increasingly anticorrelated with the H α emission. Owing to our new method, the PHANGS–HST multiscale associations provide a far more complete census of recent star formation activity than found with previous cluster and compact association catalogues.
  •  
2.
  • Rodríguez, M. Jimena, et al. (författare)
  • PHANGS–JWST First Results : Dust-embedded Star Clusters in NGC 7496 Selected via 3.3 μm PAH Emission
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The earliest stages of star formation occur enshrouded in dust and are not observable in the optical. Here we leverage the extraordinary new high-resolution infrared imaging from JWST to begin the study of dust-embedded star clusters in nearby galaxies throughout the Local Volume. We present a technique for identifying dust-embedded clusters in NGC 7496 (18.7 Mpc), the first galaxy to be observed by the PHANGS–JWST Cycle 1 Treasury Survey. We select sources that have strong 3.3 μm PAH emission based on a F300M − F335M color excess and identify 67 candidate embedded clusters. Only eight of these are found in the PHANGS-HST optically selected cluster catalog, and all are young (six have SED fit ages of ∼1 Myr). We find that this sample of embedded cluster candidates may significantly increase the census of young clusters in NGC 7496 from the PHANGS-HST catalog; the number of clusters younger than ∼2 Myr could be increased by a factor of 2. Candidates are preferentially located in dust lanes and are coincident with the peaks in the PHANGS-ALMA CO (2–1) maps. We take a first look at concentration indices, luminosity functions, SEDs spanning from 2700 Å to 21 μm, and stellar masses (estimated to be between ∼104 and 105 M⊙). The methods tested here provide a basis for future work to derive accurate constraints on the physical properties of embedded clusters, characterize the completeness of cluster samples, and expand analysis to all 19 galaxies in the PHANGS–JWST sample, which will enable basic unsolved problems in star formation and cluster evolution to be addressed.
  •  
3.
  • Scheuermann, Fabian, et al. (författare)
  • Stellar associations powering H ii regions - I. Defining an evolutionary sequence
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 522:2, s. 2369-2383
  • Tidskriftsartikel (refereegranskat)abstract
    • Connecting the gas in H II regions to the underlying source of the ionizing radiation can help us constrain the physical processes of stellar feedback and how H II regions evolve over time. With PHANGS-MUSE, we detect nearly 24 000 H II regions across 19 galaxies and measure the physical properties of the ionized gas (e.g. metallicity, ionization parameter, and density). We use catalogues of multiscale stellar associations from PHANGS-HST to obtain constraints on the age of the ionizing sources. We construct a matched catalogue of 4177 H II regions that are clearly linked to a single ionizing association. A weak anticorrelation is observed between the association ages and the H a equi v alent width EW (H a), the H a/ FUV flux ratio, and the ionization parameter, log q . As all three are expected to decrease as the stellar population ages, this could indicate that we observe an evolutionary sequence. This interpretation is further supported by correlations between all three properties. Interpreting these as evolutionary tracers, we find younger nebulae to be more attenuated by dust and closer to giant molecular clouds, in line with recent models of feedback-regulated star formation. We also observe strong correlations with the local metallicity variations and all three proposed age tracers, suggestive of star formation preferentially occurring in locations of locally enhanced metallicity. Overall, EW (H a) and log q show the most consistent trends and appear to be most reliable tracers for the age of an H II region.
  •  
4.
  • Thilker, David A., et al. (författare)
  • PHANGS–JWST First Results : The Dust Filament Network of NGC 628 and Its Relation to Star Formation Activity
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • PHANGS–JWST mid-infrared (MIR) imaging of nearby spiral galaxies has revealed ubiquitous filaments of dust emission in intricate detail. We present a pilot study to systematically map the dust filament network (DFN) at multiple scales between 25 and 400 pc in NGC 628. MIRI images at 7.7, 10, 11.3, and 21 μm of NGC 628 are used to generate maps of the filaments in emission, while PHANGS–HST B-band imaging yields maps of dust attenuation features. We quantify the correspondence between filaments traced by MIR thermal continuum/polycyclic aromatic hydrocarbon (PAH) emission and filaments detected via extinction/scattering of visible light; the fraction of MIR flux contained in the DFN; and the fraction of H ii regions, young star clusters, and associations within the DFN. We examine the dependence of these quantities on the physical scale at which the DFN is extracted. With our highest-resolution DFN maps (25 pc filament width), we find that filaments in emission and attenuation are cospatial in 40% of sight lines, often exhibiting detailed morphological agreement; that ∼30% of the MIR flux is associated with the DFN; and that 75%–80% of the star formation in H ii regions and 60% of the mass in star clusters younger than 5 Myr are contained within the DFN. However, the DFN at this scale is anticorrelated with looser associations of stars younger than 5 Myr identified using PHANGS–HST near-UV imaging. We discuss the impact of these findings on studies of star formation and the interstellar medium, and the broad range of new investigations enabled by multiscale maps of the DFN.
  •  
5.
  • Calzetti, Daniela, et al. (författare)
  • Dust-buried Compact Sources in the Dwarf Galaxy NGC 4449
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 946:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiwavelength images from the Hubble Space Telescope covering the wavelength range 0.27–1.6 μm show that the central area of the nearby dwarf galaxy NGC 4449 contains several tens of compact sources that are emitting in the hydrogen recombination line Paβ (1.2818 μm) but are only marginally detected in Hα (0.6563 μm) and undetected at wavelengths λ ≤ 0.55 μm. An analysis of the spectral energy distributions (SEDs) of these sources indicates that they are likely relatively young stellar clusters heavily attenuated by dust. The selection function used to identify the sources prevents meaningful statistical analyses of their age, mass, and dust extinction distributions. However, these cluster candidates have ages ∼5–6 Myr and AV > 6 mag, according to their SED fits, and are extremely compact, with typical deconvolved radii of 1 pc. The dusty clusters are located at the periphery of the dark clouds within the galaxy and appear to be partially embedded. Density and pressure considerations indicate that the H ii regions surrounding these clusters may be stalled, and that pre-supernova (pre-SN) feedback has not been able to clear the clusters of their natal cocoons. These findings are in potential tension with existing models that regulate star formation with pre-SN feedback, since pre-SN feedback acts on short timescales, ≲4 Myr, for a standard stellar initial mass function. The existence of a population of dusty stellar clusters with ages >4 Myr, if confirmed by future observations, paints a more complex picture for the role of stellar feedback in controlling star formation.
  •  
6.
  • Calzetti, Daniela, et al. (författare)
  • Revisiting Attenuation Curves : The Case of NGC 3351
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 913:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiwavelength images from the far-UV (similar to 0.15 mu m) to the submillimeter of the central region of the galaxy NGC 3351 are analyzed to constrain its stellar populations and dust attenuation. Despite hosting a similar to 1 kpc circumnuclear starburst ring, NGC 3351 deviates from the IRX-beta relation, the relation between the infrared-to-UV luminosity ratio and the UV continuum slope beta that other starburst galaxies follow. To understand the reason for the deviation, we leverage the high angular resolution of archival near-UV-to-near-IR Hubble Space Telescope images to divide the ring into similar to 60-180 pc size regions and model each individually. We find that the UV slope of the combined intrinsic (dust-free) stellar populations in the central region is redder than what is expected for a young model population. This is due to the region's complex star formation history, which boosts the near-UV emission relative to the far-UV. The resulting net attenuation curve has a UV slope that lies between those of the starburst attenuation curve (Calzetti et al. 2000) and the Small Magellanic Cloud extinction curve; the total-to-selective attenuation value, R'(V) = 4.93, is larger than both. As found for other star-forming galaxies, the stellar continuum of NGC 3351 is less attenuated than the ionized gas, with E(B - V)(star) = 0.40 E(B - V)(gas). The combination of the red intrinsic stellar population and the new attenuation curve fully accounts for the location of the central region of NGC 3351 on the IRX-beta diagram. Thus, the observed characteristics result from the complex mixture of stellar populations and dust column densities in the circumnuclear region. Despite being a sample of one, these findings highlight the difficulty of defining attenuation curves of general applicability outside the regime of centrally concentrated starbursts.
  •  
7.
  • Della Bruna, Lorenza, et al. (författare)
  • Studying the ISM at ∼10 pc scale in NGC 7793 with MUSE : I. Data description and properties of the ionised gas
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Studies of nearby galaxies reveal that around 50% of the total H alpha luminosity in late-type spirals originates from diffuse ionised gas (DIG), which is a warm, diffuse component of the interstellar medium that can be associated with various mechanisms, the most important ones being leaking HII regions, evolved field stars, and shocks.Aims. Using MUSE Wide Field Mode adaptive optics-assisted data, we study the condition of the ionised medium in the nearby (D=3.4 Mpc) flocculent spiral galaxy NGC 7793 at a spatial resolution of similar to 10 pc. We construct a sample of HII regions and investigate the properties and origin of the DIG component.Methods. We obtained stellar and gas kinematics by modelling the stellar continuum and fitting the H alpha emission line. We identified the boundaries of resolved HII regions based on their H alpha surface brightness. As a way of comparison, we also selected regions according to the H alpha/[SII] line ratio; this results in more conservative boundaries. Using characteristic line ratios and the gas velocity dispersion, we excluded potential contaminants, such as supernova remnants (SNRs) and planetary nebulae (PNe). The continuum subtracted HeII map was used to spectroscopically identify Wolf Rayet stars (WR) in our field of view. Finally, we computed electron densities and temperatures using the line ratio [SII]6716/6731 and [SIII]6312/9069, respectively. We studied the properties of the ionised gas through BPT emission line diagrams combined with velocity dispersion of the gas.Results. We spectroscopically confirm two previously detected WR and SNR candidates and report the discovery of the other seven WR candidates, one SNR, and two PNe within our field of view. The resulting DIG fraction is between similar to 27 and 42% depending on the method used to define the boundaries of the HII regions (flux brightness cut in H alpha = 6.7x10(-18) erg s(-1) cm(-2) or H alpha/[SII] = 2.1, respectively). In agreement with previous studies, we find that the DIG exhibits enhanced [SII]/H alpha and [NII]/H alpha ratios and a median temperature that is similar to 3000 K higher than in HII regions. We also observe an apparent inverse correlation between temperature and H alpha surface brightness. In the majority of our field of view, the observed [SII]6716/6731 ratio is consistent within 1 sigma with n(e)< 30 cm(-3), with an almost identical distribution for the DIG and HII regions. The velocity dispersion of the ionised gas indicates that the DIG has a higher degree of turbulence than the HII regions. Comparison with photoionisation and shock models reveals that, overall, the diffuse component can only partially be explained via shocks and that it is most likely consistent with photons leaking from density bounded HII regions or with radiation from evolved field stars. Further investigation will be conducted in a follow-up paper.
  •  
8.
  • Della Bruna, Lorenza, et al. (författare)
  • Studying the ISM at similar to 10 pc scale in NGC 7793 with MUSE : II. Constraints on the oxygen abundance and ionising radiation escape
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 650
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Feedback from massive stars a ffects the interstellar medium (ISM) from the immediate surroundings of the stars (parsec scales) to galactic (kiloparsec) scales. High-spatial resolution studies of H ii regions are critical to investigate how this mechanism operates.Aims. We study the ionised ISM in NGC7793 with the MUSE instrument at ESO Very Large Telescope (VLT), over a field of view (FoV) of similar to 2 kpc2 and at a spatial resolution of similar to 10 pc. The aim is to link the physical conditions of the ionised gas (reddening, ionisation status, abundance measurements) within the spatially resolved H ii regions to the properties of the stellar populations producing Lyman continuum photons.Methods. The analysis of the MUSE dataset, which provides a map of the ionised gas and a census of Wolf Rayet stars, is complemented with a sample of young star clusters (YSCs) and O star candidates observed with the Hubble Space Telescope (HST) and of giant molecular clouds traced in CO(2-1) emission with the Atacama Large Millimeter /submillimeter Array (ALMA). We estimated the oxygen abundance using a temperature-independent strong-line method. We determined the observed total amount of ionising photons ( Q(H0)) from the extinction corrected H ff luminosity. This estimate was then compared to the expected Q(H0) obtained by summing the contributions of YSCs and massive stars. The ratio of the two values gives an estimate for the escape fraction ( fesc) of photons in the region of interest. We used the [S ii] /[O iii] ratio as a proxy for the optical depth of the gas and classified H ii regions into ionisation bounded, or as featuring channels of optically thin gas. We compared the resulting ionisation structure with the computed fesc. We also investigated the dependence of fesc on the age spanned by the stellar population in each region.Results. We find a median oxygen abundance of 12 + log (O =H) similar to 8 :37, with a scatter of 0.25 dex, which is in agreement with previous estimates for our target. We furthermore observe that the abundance map of H ii regions is rich in substructures, surrounding clusters and massive stars, although clear degeneracies with photoionisation are also observed. From the population synthesis analysis, we find that YSCs located in H ii regions have a higher probability of being younger and less massive as well as of emitting a higher number of ionising photons than clusters in the rest of the field. Overall, we find fesc;H ii = 0:67+0:08 0:12 for the population of H ii regions. We also conclude that the sources of ionisation observed within the FoV are more than su fficient to explain the amount of di ffuse ionised gas (DIG) observed in this region of the galaxy. We do not observe a systematic trend between the visual appearance of H ii regions and fesc, pointing to the e ffect of 3D geometry in the small sample probed.
  •  
9.
  • Finn, Molly K., et al. (författare)
  • ALMA-LEGUS. I. The Influence of Galaxy Morphology on Molecular Cloud Properties
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 964:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a comparative study of the molecular gas in two galaxies from the Legacy ExtraGalactic UV Survey (LEGUS) sample: barred spiral NGC 1313 and flocculent spiral NGC 7793. These two galaxies have similar masses, metallicities, and star formation rates, but NGC 1313 is forming significantly more massive star clusters than NGC 7793, especially young massive clusters (<10 Myr, >104M⊙). Using Atacama Large Millimeter/submillimeter Array (ALMA) CO(2–1) observations of the two galaxies with the same sensitivity and resolution (13 pc), we directly compare the molecular gas in these two similar galaxies to determine the physical conditions responsible for their large disparity in cluster formation. By fitting size–line width relations for the clouds in each galaxy, we find that NGC 1313 has a higher intercept than NGC 7793, implying that its clouds have higher kinetic energies at a given size scale. NGC 1313 also has more clouds near virial equilibrium than NGC 7793, which may be connected to its higher rate of massive cluster formation. However, these virially bound clouds do not show a stronger correlation with young clusters than with the general cloud population. We find surprisingly small differences between the distributions of molecular cloud populations in the two galaxies, though the largest of those differences is that NGC 1313 has higher surface densities and lower freefall times.
  •  
10.
  • Finn, Molly K., et al. (författare)
  • ALMA-LEGUS. II. The Influence of Subgalactic Environments on Molecular Cloud Properties
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 964:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We compare the molecular cloud properties in subgalactic regions of two galaxies, barred spiral NGC 1313, which is forming many massive clusters, and flocculent spiral NGC 7793, which is forming significantly fewer massive clusters despite having a similar star formation rate to NGC 1313. We find that there are larger variations in cloud properties between different regions within each galaxy than there are between the galaxies on a global scale, especially for NGC 1313. There are higher masses, line widths, pressures, and virial parameters in the arms of NGC 1313 and the center of NGC 7793 than in the interarm and outer regions of the galaxies. The massive cluster formation of NGC 1313 may be driven by its greater variation in environment, allowing more clouds with the necessary conditions to emerge, although no one parameter seems primarily responsible for the difference in star formation. Meanwhile NGC 7793 has clouds that are as massive and have as much kinetic energy as the clouds in the arms of NGC 1313, but have densities and pressures more similar to those in the interarm regions and so are less inclined to collapse and form stars. The cloud properties in NGC 1313 and NGC 7793 suggest that spiral arms, bars, interarm regions, and flocculent spirals each represent distinct environments with regard to molecular cloud populations. We see surprisingly little difference in surface density between the regions, suggesting that the differences in surface densities frequently seen between arm and interarm regions in lower-resolution studies are indicative of the sparsity of molecular clouds, rather than differences in their true surface density.
  •  
11.
  • Gouliermis, Dimitrios A., et al. (författare)
  • Hierarchical star formation across the grand-design spiral NGC 1566
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 468:1, s. 509-530
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate how star formation is spatially organized in the grand-design spiral NGC 1566 from deep Hubble Space Telescope photometry with the Legacy ExtraGalactic UV Survey. Our contour-based clustering analysis reveals 890 distinct stellar conglomerations at various levels of significance. These star- forming complexes are organized in a hierarchical fashion with the larger congregations consisting of smaller structures, which themselves fragment into even smaller and more compact stellar groupings. Their size distribution, covering a wide range in length-scales, shows a power law as expected from scale-free processes. We explain this shape with a simple 'fragmentation and enrichment' model. The hierarchical morphology of the complexes is confirmed by their mass-size relation that can be represented by a power law with a fractional exponent, analogous to that determined for fractal molecular clouds. The surface stellar density distribution of the complexes shows a lognormal shape similar to that for supersonic non-gravitating turbulent gas. Between 50 and 65 per cent of the recently formed stars, as well as about 90 per cent of the young star clusters, are found inside the stellar complexes, located along the spiral arms. We find an age difference between young stars inside the complexes and those in their direct vicinity in the arms of at least 10 Myr. This time-scale may relate to the minimum time for stellar evaporation, although we cannot exclude the in situ formation of stars. As expected, star formation preferentially occurs in spiral arms. Our findings reveal turbulent-driven hierarchical star formation along the arms of a grand-design galaxy.
  •  
12.
  • Gouliermis, Dimitrios A., et al. (författare)
  • Hierarchical star formation across the ring galaxy NGC 6503
  • 2015
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 452:4, s. 3508-3528
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed clustering analysis of the young stellar population across the star-forming ring galaxy NGC 6503, based on the deep Hubble Space Telescope photometry obtained with the Legacy ExtraGalactic UV Survey. We apply a contour-based map analysis technique and identify in the stellar surface density map 244 distinct star-forming structures at various levels of significance. These stellar complexes are found to be organized in a hierarchical fashion with 95 per cent being members of three dominant super-structures located along the star-forming ring. The size distribution of the identified structures and the correlation between their radii and numbers of stellar members show power-law behaviours, as expected from scale-free processes. The self-similar distribution of young stars is further quantified from their autocorrelation function, with a fractal dimension of similar to 1.7 for length-scales between similar to 20 pc and 2.5 kpc. The young stellar radial distribution sets the extent of the star-forming ring at radial distances between 1 and 2.5 kpc. About 60 per cent of the young stars belong to the detected stellar structures, while the remaining stars are distributed among the complexes, still inside the ring of the galaxy. The analysis of the time-dependent clustering of young populations shows a significant change from a more clustered to a more distributed behaviour in a time-scale of similar to 60 Myr. The observed hierarchy in stellar clustering is consistent with star formation being regulated by turbulence across the ring. The rotational velocity difference between the edges of the ring suggests shear as the driving mechanism for this process. Our findings reveal the interesting case of an inner ring forming stars in a hierarchical fashion.
  •  
13.
  • Hannon, Stephen, et al. (författare)
  • Star cluster classification using deep transfer learning with PHANGS-HST
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 526:2, s. 2991-3006
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently available star cluster catalogues from the Hubble Space Telescope (HST) imaging of nearby galaxies heavily rely on visual inspection and classification of candidate clusters. The time-consuming nature of this process has limited the production of reliable catalogues and thus also post-observation analysis. To address this problem, deep transfer learning has recently been used to create neural network models that accurately classify star cluster morphologies at production scale for nearby spiral galaxies (D ≲ 20 Mpc). Here, we use HST ultraviolet (UV)–optical imaging of over 20 000 sources in 23 galaxies from the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) survey to train and evaluate two new sets of models: (i) distance-dependent models, based on cluster candidates binned by galaxy distance (9–12, 14–18, and 18–24 Mpc), and (ii) distance-independent models, based on the combined sample of candidates from all galaxies. We find that the overall accuracy of both sets of models is comparable to previous automated star cluster classification studies (∼60–80 per cent) and shows improvement by a factor of 2 in classifying asymmetric and multipeaked clusters from PHANGS-HST. Somewhat surprisingly, while we observe a weak negative correlation between model accuracy and galactic distance, we find that training separate models for the three distance bins does not significantly improve classification accuracy. We also evaluate model accuracy as a function of cluster properties such as brightness, colour, and spectral energy distribution (SED)-fit age. Based on the success of these experiments, our models will provide classifications for the full set of PHANGS-HST candidate clusters (N ∼ 200 000) for public release.
  •  
14.
  • Heyer, Mark, et al. (författare)
  • The Dense Gas Mass Fraction and the Relationship to Star Formation in M51
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 930:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of 12CO J = 1 – 0 and HCN J = 1 – 0 emission from NGC 5194 (M51) made with the 50 m Large Millimeter Telescope and the SEQUOIA focal plane array are presented. Using the HCN-to-CO ratio, we examine the dense gas mass fraction over a range of environmental conditions within the galaxy. Within the disk, the dense gas mass fraction varies along the spiral arms but the average value over all spiral arms is comparable to the mean value of interarm regions. We suggest that the near-constant dense gas mass fraction throughout the disk arises from a population of density-stratified, self-gravitating molecular clouds and the required density threshold to detect each spectral line. The measured dense gas fraction significantly increases in the central bulge in response to the effective pressure, Pe, from the weight of the stellar and gas components. This pressure modifies the dynamical state of the molecular cloud population and, possibly, the HCN-emitting regions in the central bulge from self-gravitating to diffuse configurations in which Pe is greater than the gravitational energy density of individual clouds. Diffuse molecular clouds comprise a significant fraction of the molecular gas mass in the central bulge, which may account for the measured sublinear relationships between the surface densities of the star formation rate and molecular and dense gas.
  •  
15.
  • Hunter, Deidre A., et al. (författare)
  • A Comparison of Young Star Properties with Local Galactic Environment for LEGUS/LITTLE THINGS Dwarf Irregular Galaxies
  • 2018
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 156:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We have explored the role environmental factors play in determining characteristics of young stellar objects in nearby dwarf irregular and blue compact dwarf galaxies. Star clusters are characterized by concentrations, masses, and formation rates; OB associations by mass and mass surface density; O stars by their numbers and near-ultraviolet absolute magnitudes; and H II regions by H alpha surface brightnesses. These characteristics are compared to surrounding galactic pressure, stellar mass density, H I surface density, and star formation rate (SFR) surface density. We find no trend of cluster characteristics with environmental properties, implying that larger-scale effects are more important in determining cluster characteristics or that rapid dynamical evolution erases any memory of the initial conditions. On the other hand, the most massive OB associations are found at higher pressure and H I surface density, and there is a trend of higher H II region H alpha surface brightness with higher pressure, suggesting that a higher concentration of massive stars and gas is found preferentially in regions of higher pressure. At low pressures we find massive stars but not bound clusters and OB associations. We do not find evidence for an increase of cluster formation efficiency as a function of SFR density. However, there is an increase in the ratio of the number of clusters to the number of O stars with increasing pressure, perhaps reflecting an increase in clustering properties with SFR.
  •  
16.
  • Hunter, Deidre A., et al. (författare)
  • A Study of Two Dwarf Irregular Galaxies with Asymmetrical Star Formation Distributions
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 855:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Two dwarf irregular galaxies, DDO 187 and NGC 3738, exhibit a striking pattern of star formation: intense star formation is taking place in a large region occupying roughly half of the inner part of the optical galaxy. We use data on the H I distribution and kinematics and stellar images and colors to examine the properties of the environment in the high star formation rate (HSF) halves of the galaxies in comparison with the low star formation rate halves. We find that the pressure and gas density are higher on the HSF sides by 30%-70%. In addition we find in both galaxies that the H I velocity fields exhibit significant deviations from ordered rotation and there are large regions of high-velocity dispersion and multiple velocity components in the gas beyond the inner regions of the galaxies. The conditions in the HSF regions are likely the result of large-scale external processes affecting the internal environment of the galaxies and enabling the current star formation there.
  •  
17.
  • Krumholz, Mark R., et al. (författare)
  • STAR CLUSTER PROPERTIES IN TWO LEGUS GALAXIES COMPUTED WITH STOCHASTIC STELLAR POPULATION SYNTHESIS MODELS
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 812:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate a novel Bayesian analysis method, based on the Stochastically Lighting Up Galaxies (slug) code, to derive the masses, ages, and extinctions of star clusters from integrated light photometry. Unlike many analysis methods, slug correctly accounts for incomplete initial mass function (IMF) sampling, and returns full posterior probability distributions rather than simply probability maxima. We apply our technique to 621 visually confirmed clusters in two nearby galaxies, NGC 628 and NGC 7793, that are part of the Legacy Extragalactic UV Survey (LEGUS). LEGUS provides Hubble Space Telescope photometry in the NUV, U, B, V, and I bands. We analyze the sensitivity of the derived cluster properties to choices of prior probability distribution, evolutionary tracks, IMF, metallicity, treatment of nebular emission, and extinction curve. We find that slug's results for individual clusters are insensitive to most of these choices, but that the posterior probability distributions we derive are often quite broad, and sometimes multi-peaked and quite sensitive to the choice of priors. In contrast, the properties of the cluster population as a whole are relatively robust against all of these choices. We also compare our results from slug to those derived with a conventional non-stochastic fitting code, Yggdrasil. We show that slug's stochastic models are generally a better fit to the observations than the deterministic ones used by Yggdrasil. However, the overall properties of the cluster populations recovered by both codes are qualitatively similar.
  •  
18.
  • Liu, Daizhong, et al. (författare)
  • PHANGS–JWST First Results : Stellar-feedback-driven Excitation and Dissociation of Molecular Gas in the Starburst Ring of NGC 1365?
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We compare embedded young massive star clusters (YMCs) to (sub-)millimeter line observations tracing the excitation and dissociation of molecular gas in the starburst ring of NGC 1365. This galaxy hosts one of the strongest nuclear starbursts and richest populations of YMCs within 20 Mpc. Here we combine near-/mid-IR PHANGS–JWST imaging with new Atacama Large Millimeter/submillimeter Array multi-J CO (1–0, 2–1 and 4–3) and [C ı] (1–0) mapping, which we use to trace CO excitation via R42 = ICO(4−3)/ICO(2−1) and R21 = ICO(2−1)/ICO(1−0) and dissociation via RCICO = I[CI](1−0)/ICO(2−1) at 330 pc resolution. We find that the gas flowing into the starburst ring from northeast to southwest appears strongly affected by stellar feedback, showing decreased excitation (lower R42) and increased signatures of dissociation (higher RCICO) in the downstream regions. There, radiative-transfer modeling suggests that the molecular gas density decreases and temperature and [CI/CO] abundance ratio increase. We compare R42 and RCICO with local conditions across the regions and find that both correlate with near-IR 2 μm emission tracing the YMCs and with both polycyclic aromatic hydrocarbon (11.3 μm) and dust continuum (21 μm) emission. In general, RCICO exhibits ∼0.1 dex tighter correlations than R42, suggesting C ı to be a more sensitive tracer of changing physical conditions in the NGC 1365 starburst than CO (4–3). Our results are consistent with a scenario where gas flows into the two arm regions along the bar, becomes condensed/shocked, forms YMCs, and then these YMCs heat and dissociate the gas.
  •  
19.
  • Menon, Shyam H., et al. (författare)
  • The dependence of the hierarchical distribution of star clusters on galactic environment
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 507:4, s. 5542-5566
  • Tidskriftsartikel (refereegranskat)abstract
    • We use the angular two-point correlation function (TPCF) to investigate the hierarchical distribution of young star clusters in 12 local (3–18 Mpc) star-forming galaxies using star cluster catalogs obtained with the Hubble Space Telescope (HST) as part of the Treasury Program Legacy ExtraGalactic UV Survey. The sample spans a range of different morphological types, allowing us to infer how the physical properties of the galaxy affect the spatial distribution of the clusters. We also prepare a range of physically motivated toy models to compare with and interpret the observed features in the TPCFs. We find that, conforming to earlier studies, young clusters (⁠T≲10Myr⁠) have power-law TPCFs that are characteristic of fractal distributions with a fractal dimension D2, and this scale-free nature extends out to a maximum scale lcorr beyond which the distribution becomes Poissonian. However, lcorr, and D2 vary significantly across the sample, and are correlated with a number of host galaxy physical properties, suggesting that there are physical differences in the underlying star cluster distributions. We also find that hierarchical structuring weakens with age, evidenced by flatter TPCFs for older clusters (⁠T≳10Myr⁠), that eventually converges to the residual correlation expected from a completely random large-scale radial distribution of clusters in the galaxy in ∼100Myr⁠. Our study demonstrates that the hierarchical distribution of star clusters evolves with age, and is strongly dependent on the properties of the host galaxy environment.
  •  
20.
  • Messa, Matteo, et al. (författare)
  • Looking for Obscured Young Star Clusters in NGC 1313
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 909:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Using recently acquired Hubble Space Telescope NIR observations (J, Pa beta, and H bands) of the nearby galaxy NGC 1313, we investigate the timescales required by a young star cluster to emerge from its natal cloud. We search for extincted star clusters, potentially embedded in their natal cloud as either (1) compact sources in regions with high H alpha/Pa beta extinctions or (2) compact H II regions that appear as point-like sources in the Pa beta emission map. The NUV-optical-NIR photometry of the candidate clusters is used to derive their ages, masses, and extinctions via a least-chi(2) spectral energy distribution broad- and narrowband fitting process. The 100 clusters in the final samples have masses in the range log10(M M-circle dot) = 2.5-3.5 and moderate extinctions, E(B - V) less than or similar to 1.0 mag. Focusing on the young clusters (0-6Myr), we derive a weak correlation between extinction and age of the clusters. Almost half of the clusters have low extinctions, E(B - V) < 0.25 mag, already at very young ages (<= 3Myr), suggesting that dust is quickly removed from clusters. A stronger correlation is found between the morphology of the nebular emission (compact, partial or absent, both in H alpha and Pa beta) and cluster age. Relative fractions of clusters associated with a specific nebular morphology are used to estimate the typical timescales for clearing the natal gas cloud, resulting in between 3 and 5Myr, similar to 1Myr older than what was estimated from NUV-optical-based cluster studies. This difference hints at a bias for optical-only-based studies, which James Webb Space Telescope will address in the coming years.
  •  
21.
  • Orozco-Duarte, Rogelio, et al. (författare)
  • Synthetic photometry of OB star clusters with stochastically sampled IMFs : analysis of models and HST observations
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 509:1, s. 522-549
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a pilot library of synthetic NUV, U, B, V, and I photometry of star clusters with stochastically sampled IMFs and ionized gas for initial masses, Mi = 103, 104, and 105 M⊙; t = 1, 3, 4, and 8 Myr; Z = 0.014 and Z = 0.002; and log(US) = −2 and −3. We compare the library with predictions from deterministic models and observations of isolated low-mass (<104 M⊙) star clusters with co-spatial compact H II regions. The clusters are located in NGC 7793, one of the nearest galaxies observed as part of the HST LEGUS and Hα-LEGUS surveys. (1) For model magnitudes that only account for the stars: (a) the residual |deterministic mag - median stochastic mag| can be ≥0.5 mag, even for Mi = 105 M⊙; and (b) the largest spread in stochastic magnitudes occurs when Wolf–Rayet stars are present. (2) For Mi = 105 M⊙: (a) the median stochastic mag with gas can be >1.0 mag more luminous than the median stochastic magnitude without gas; and (b) nebular emission lines can contribute with >50 per cent and >30 per cent to the total emission in the V and I bands, respectively. (3) Age-dating OB-star clusters via deterministic tracks in the U-B versus V-I plane is highly uncertain at Z = 0.014 for Mi ∼ 103 M⊙ and Z = 0.002 for Mi ∼ 103–105 M⊙. (4) For low-mass clusters, the V-band extinction derived with stochastic models significantly depends on the value of log(US). (5) The youngest clusters tend to have higher extinction. (6) The majority of clusters have multi-peaked age PDFs. (7) Finally, we discuss the importance of characterizing the true variance in the number of stars per mass bin in nature.
  •  
22.
  • Schinnerer, Eva, et al. (författare)
  • PHANGS-JWST First Results : Rapid Evolution of Star Formation in the Central Molecular Gas Ring of NGC 1365
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale bars can fuel galaxy centers with molecular gas, often leading to the development of dense ringlike structures where intense star formation occurs, forming a very different environment compared to galactic disks. We pair ∼0.″3 (30 pc) resolution new JWST/MIRI imaging with archival ALMA CO(2-1) mapping of the central ∼5 kpc of the nearby barred spiral galaxy NGC 1365 to investigate the physical mechanisms responsible for this extreme star formation. The molecular gas morphology is resolved into two well-known bright bar lanes that surround a smooth dynamically cold gas disk (R gal ∼ 475 pc) reminiscent of non-star-forming disks in early-type galaxies and likely fed by gas inflow triggered by stellar feedback in the lanes. The lanes host a large number of JWST-identified massive young star clusters. We find some evidence for temporal star formation evolution along the ring. The complex kinematics in the gas lanes reveal strong streaming motions and may be consistent with convergence of gas streamlines expected there. Indeed, the extreme line widths are found to be the result of inter-“cloud” motion between gas peaks; ScousePy decomposition reveals multiple components with line widths of 〈σ CO,scouse〉 ≈ 19 km s−1 and surface densities of 〈 Σ H 2 , scouse 〉 ≈ 800 M ⊙ pc − 2 , similar to the properties observed throughout the rest of the central molecular gas structure. Tailored hydrodynamical simulations exhibit many of the observed properties and imply that the observed structures are transient and highly time-variable. From our study of NGC 1365, we conclude that it is predominantly the high gas inflow triggered by the bar that is setting the star formation in its CMZ.
  •  
23.
  • Sharda, Piyush, et al. (författare)
  • The impact of carbon and oxygen abundances on the metal-poor initial mass function
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 518:3, s. 3985-3998
  • Tidskriftsartikel (refereegranskat)abstract
    • Star formation models predict that the metal-poor initial mass function (IMF) can be substantially different from that observed in the metal-rich Milky Way. This changeover occurs because metal-poor gas clouds cool inefficiently due to their lower abundance of metals and dust. However, predictions for the metal-poor IMF to date rely on assuming solar-scaled abundances, i.e. [X/O] = 0 at all [O/H]. There is now growing evidence that elements such as C and O that dominate metal line cooling in the ISM do not follow solar scaling at low metallicities. In this work, we extend models that predict the variation in the characteristic (or the peak) IMF mass as a function of metallicity using [C/O] ratios derived from observations of metal-poor Galactic stars and of Hii regions in dwarf galaxies. These data show [C/O] < 0 at subsolar [O/H], which leads to a substantially different metal-poor IMF in the metallicity range where Ci and Cii cooling dominate ISM thermodynamics, resulting in an increase in the characteristic mass by a factor as large as 7. An important consequence of this difference is a shift in the location of the transition from a top- to a bottom-heavy IMF upwards by 0.5-1 dex in metallicity. Our findings indicate that the IMF is very sensitive to the assumptions around solar-scaled ISM compositions in metal-poor systems (e.g. dwarf galaxies, the Galactic halo, and metal-poor stars) that are a key focus of JWST.
  •  
24.
  • Sirressi, Mattia, et al. (författare)
  • CLusters in the UV as EngineS (CLUES). I. Survey Presentation and FUV Spectral Analysis of the Stellar Light
  • 2022
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 164:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The CLusters in the Uv as EngineS (CLUES) survey is a Cosmic Origins Spectrograph (COS) campaign aimed at acquiring the 1130–1770 Å rest-frame spectroscopy of very young (<20 Myr) and massive (>104 M⊙) star clusters in galaxies that are part of the Hubble treasury program Legacy ExtraGalactic UV Survey. In this first paper of a series, we describe the CLUES sample consisting of 20 young star clusters and report their physical properties as derived by both multiwavelength photometry and far-UV (FUV) spectroscopy with Hubble Space Telescope. Thanks to the synergy of the two different data sets, we build a coherent picture of the diverse stellar populations found in each region (with sizes of 40–160 pc). We associate the FUV-brightest stellar population to the central targeted star cluster and the other modeled population to the diffuse stars that are included in the COS aperture. We observe better agreement between photometric and spectroscopic ages for star clusters younger than 5 Myr. For clusters older than 5 Myr, photometry and spectroscopy measurements deviate, with the latter producing older ages, due to the degeneracy of photometric models. FUV spectroscopy enables us to better constrain the stellar metallicities, a parameter that optical colors are insensitive to. Finally, the derived E(B − V) are quite similar, with a tendency for FUV spectroscopy to favor solutions with higher extinctions. The recovered masses are in agreement within a factor of 2 for all of the clusters.
  •  
25.
  • Sirressi, Mattia, 1995-, et al. (författare)
  • CLusters in the Uv as EngineS (CLUES). II. Subkiloparsec-scale Outflows Driven by Stellar Feedback
  • 2024
  • Ingår i: Astronomical Journal. - 0004-6256 .- 1538-3881. ; 167:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze the far-ultraviolet (1130−1770 Å rest frame) spectroscopy of 20 young (<50 Myr) and massive (>104M⊙) star clusters (YSCs) in 11 nearby star-forming galaxies. We probe the interstellar gas intervening along the line of sight, detecting several metal absorption lines of a wide range of ionization potentials, from 6.0 to 77.5 eV. Multiple-component Voigt fits to the absorption lines are used to study the kinematics of the gas. We find that nearly all targets in the sample feature gas outflowing from 30 up to 190 km s−1, often in both the neutral and ionized phases. The outflow velocities correlate with the underlying stellar population properties directly linked to the feedback: the mass of the YSCs, the photon production rate, and the instantaneous mechanical luminosity produced by stellar winds and supernovae. We detect a neutral inflow in four targets, which we interpret as likely not associated with the star cluster but tracing larger-scale gas kinematics. A comparison between the outflows' energy and that produced by the associated young stellar populations suggests an average coupling efficiency of 10% with a broad scatter. Our results extend the relation found in previous works between galactic outflows and the host galaxy star formation rate to smaller scales, pointing toward the key role that clustered star formation and feedback play in regulating galaxy growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy