SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Grassmann F) "

Search: WFRF:(Grassmann F)

  • Result 1-25 of 40
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Middha, Pooja K., et al. (author)
  • A genome-wide gene-environment interaction study of breast cancer risk for women of European ancestry
  • 2023
  • In: Breast Cancer Research. - : BioMed Central (BMC). - 1465-5411 .- 1465-542X. ; 25:1
  • Journal article (peer-reviewed)abstract
    • Background Genome-wide studies of gene-environment interactions (GxE) may identify variants associated with disease risk in conjunction with lifestyle/environmental exposures. We conducted a genome-wide GxE analysis of similar to 7.6 million common variants and seven lifestyle/environmental risk factors for breast cancer risk overall and for estrogen receptor positive (ER +) breast cancer. Methods Analyses were conducted using 72,285 breast cancer cases and 80,354 controls of European ancestry from the Breast Cancer Association Consortium. Gene-environment interactions were evaluated using standard unconditional logistic regression models and likelihood ratio tests for breast cancer risk overall and for ER + breast cancer. Bayesian False Discovery Probability was employed to assess the noteworthiness of each SNP-risk factor pairs. Results Assuming a 1 x 10(-5) prior probability of a true association for each SNP-risk factor pairs and a Bayesian False Discovery Probability < 15%, we identified two independent SNP-risk factor pairs: rs80018847(9p13)-LINGO2 and adult height in association with overall breast cancer risk (ORint = 0.94, 95% CI 0.92-0.96), and rs4770552(13q12)-SPATA13 and age at menarche for ER + breast cancer risk (ORint = 0.91, 95% CI 0.88-0.94). Conclusions Overall, the contribution of GxE interactions to the heritability of breast cancer is very small. At the population level, multiplicative GxE interactions do not make an important contribution to risk prediction in breast cancer.
  •  
2.
  • Mueller, Stefanie H., et al. (author)
  • Aggregation tests identify new gene associations with breast cancer in populations with diverse ancestry
  • 2023
  • In: Genome Medicine. - : BioMed Central (BMC). - 1756-994X. ; 15
  • Journal article (peer-reviewed)abstract
    • Background: Low-frequency variants play an important role in breast cancer (BC) susceptibility. Gene-based methods can increase power by combining multiple variants in the same gene and help identify target genes.Methods: We evaluated the potential of gene-based aggregation in the Breast Cancer Association Consortium cohorts including 83,471 cases and 59,199 controls. Low-frequency variants were aggregated for individual genes' coding and regulatory regions. Association results in European ancestry samples were compared to single-marker association results in the same cohort. Gene-based associations were also combined in meta-analysis across individuals with European, Asian, African, and Latin American and Hispanic ancestry.Results: In European ancestry samples, 14 genes were significantly associated (q < 0.05) with BC. Of those, two genes, FMNL3 (P = 6.11 x 10(-6)) and AC058822.1 (P = 1.47 x 10(-4)), represent new associations. High FMNL3 expression has previously been linked to poor prognosis in several other cancers. Meta-analysis of samples with diverse ancestry discovered further associations including established candidate genes ESR1 and CBLB. Furthermore, literature review and database query found further support for a biologically plausible link with cancer for genes CBLB, FMNL3, FGFR2, LSP1, MAP3K1, and SRGAP2C.Conclusions: Using extended gene-based aggregation tests including coding and regulatory variation, we report identification of plausible target genes for previously identified single-marker associations with BC as well as the discovery of novel genes implicated in BC development. Including multi ancestral cohorts in this study enabled the identification of otherwise missed disease associations as ESR1 (P = 1.31 x 10(-5)), demonstrating the importance of diversifying study cohorts.
  •  
3.
  •  
4.
  • Figlioli, G, et al. (author)
  • FANCM missense variants and breast cancer risk: a case-control association study of 75,156 European women
  • 2023
  • In: European journal of human genetics : EJHG. - : Springer Science and Business Media LLC. - 1476-5438 .- 1018-4813. ; 31:5, s. 578-587
  • Journal article (peer-reviewed)abstract
    • Evidence from literature, including the BRIDGES study, indicates that germline protein truncating variants (PTVs) in FANCM confer moderately increased risk of ER-negative and triple-negative breast cancer (TNBC), especially for women with a family history of the disease. Association between FANCM missense variants (MVs) and breast cancer risk has been postulated. In this study, we further used the BRIDGES study to test 689 FANCM MVs for association with breast cancer risk, overall and in ER-negative and TNBC subtypes, in 39,885 cases (7566 selected for family history) and 35,271 controls of European ancestry. Sixteen common MVs were tested individually; the remaining rare 673 MVs were tested by burden analyses considering their position and pathogenicity score. We also conducted a meta-analysis of our results and those from published studies. We did not find evidence for association for any of the 16 variants individually tested. The rare MVs were significantly associated with increased risk of ER-negative breast cancer by burden analysis comparing familial cases to controls (OR = 1.48; 95% CI 1.07–2.04; P = 0.017). Higher ORs were found for the subgroup of MVs located in functional domains or predicted to be pathogenic. The meta-analysis indicated that FANCM MVs overall are associated with breast cancer risk (OR = 1.22; 95% CI 1.08–1.38; P = 0.002). Our results support the definition from previous analyses of FANCM as a moderate-risk breast cancer gene and provide evidence that FANCM MVs could be low/moderate risk factors for ER-negative and TNBC subtypes. Further genetic and functional analyses are necessary to clarify better the increased risks due to FANCM MVs.
  •  
5.
  •  
6.
  •  
7.
  • Grassmann, F, et al. (author)
  • A systems genomics approach to uncover the molecular properties of cancer genes
  • 2020
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 18392-
  • Journal article (peer-reviewed)abstract
    • Genes involved in cancer are under constant evolutionary pressure, potentially resulting in diverse molecular properties. In this study, we explore 23 omic features from publicly available databases to define the molecular profile of different classes of cancer genes. Cancer genes were grouped according to mutational landscape (germline and somatically mutated genes), role in cancer initiation (cancer driver genes) or cancer survival (survival genes), as well as being implicated by genome-wide association studies (GWAS genes). For each gene, we also computed feature scores based on all omic features, effectively summarizing how closely a gene resembles cancer genes of the respective class. In general, cancer genes are longer, have a lower GC content, have more isoforms with shorter exons, are expressed in more tissues and have more transcription factor binding sites than non-cancer genes. We found that germline genes more closely resemble single tissue GWAS genes while somatic genes are more similar to pleiotropic cancer GWAS genes. As a proof-of-principle, we utilized aggregated feature scores to prioritize genes in breast cancer GWAS loci and found that top ranking genes were enriched in cancer related pathways. In conclusion, we have identified multiple omic features associated with different classes of cancer genes, which can assist prioritization of genes in cancer gene discovery.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Grassmann, F, et al. (author)
  • Interval breast cancer is associated with other types of tumors
  • 2019
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4648-
  • Journal article (peer-reviewed)abstract
    • Breast cancer (BC) patients diagnosed between two screenings (interval cancers) are more likely than screen-detected patients to carry rare deleterious mutations in cancer genes potentially leading to increased risk for other non-breast cancer (non-BC) tumors. In this study, we include 14,846 women diagnosed with BC of which 1,772 are interval and 13,074 screen-detected. Compared to women with screen-detected cancers, interval breast cancer patients are more likely to have a non-BC tumor before (Odds ratio (OR): 1.43 [1.19–1.70], P = 9.4 x 10−5) and after (OR: 1.28 [1.14–1.44], P = 4.70 x 10−5) breast cancer diagnosis, are more likely to report a family history of non-BC tumors and have a lower genetic risk score based on common variants for non-BC tumors. In conclusion, interval breast cancer is associated with other tumors and common cancer variants are unlikely to be responsible for this association. These findings could have implications for future screening and prevention programs.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Hagg, S, et al. (author)
  • Deciphering the genetic and epidemiological landscape of mitochondrial DNA abundance
  • 2021
  • In: Human genetics. - : Springer Science and Business Media LLC. - 1432-1203 .- 0340-6717. ; 140:6, s. 849-861
  • Journal article (peer-reviewed)abstract
    • Mitochondrial (MT) dysfunction is a hallmark of aging and has been associated with most aging-related diseases as well as immunological processes. However, little is known about aging, lifestyle and genetic factors influencing mitochondrial DNA (mtDNA) abundance. In this study, mtDNA abundance was estimated from the weighted intensities of probes mapping to the MT genome in 295,150 participants from the UK Biobank. We found that the abundance of mtDNA was significantly elevated in women compared to men, was negatively correlated with advanced age, higher smoking exposure, greater body-mass index, higher frailty index as well as elevated red and white blood cell count and lower mortality. In addition, several biochemistry markers in blood-related to cholesterol metabolism, ion homeostasis and kidney function were found to be significantly associated with mtDNA abundance. By performing a genome-wide association study, we identified 50 independent regions genome-wide significantly associated with mtDNA abundance which harbour multiple genes involved in the immune system, cancer as well as mitochondrial function. Using mixed effects models, we estimated the SNP-heritability of mtDNA abundance to be around 8%. To investigate the consequence of altered mtDNA abundance, we performed a phenome-wide association study and found that mtDNA abundance is involved in risk for leukaemia, hematologic diseases as well as hypertension. Thus, estimating mtDNA abundance from genotyping arrays has the potential to provide novel insights into age- and disease-relevant processes, particularly those related to immunity and established mitochondrial functions.
  •  
16.
  • He, W., et al. (author)
  • CYP2D6 genotype predicts tamoxifen discontinuation and drug response : a secondary analysis of the KARISMA trial
  • 2021
  • In: Annals of Oncology. - : Elsevier BV. - 0923-7534. ; 32:10, s. 1286-1293
  • Journal article (peer-reviewed)abstract
    • Background: Guidelines regarding whether tamoxifen should be prescribed based on women's cytochrome P450 2D6 (CYP2D6) genotypes are conflicting and have caused confusion. This study aims to investigate if CYP2D6 metabolizer status isa associated with tamoxifen-related endocrine symptoms, tamoxifen discontinuation, and mammographic density change. Patients and methods: We used data from 1440 healthy women who participated the KARISMA dose determination trial. Endocrine symptoms were measured using a modified Functional Assessment of Cancer Therapy – Endocrine Symptoms (FACT-ES) questionnaire. Change in mammographic density was measured and used as a proxy for tamoxifen response. Participants were genotyped and categorized as poor, intermediate, normal, or ultrarapid CYP2D6 metabolizers. Results: The median endoxifen level per mg oral tamoxifen among poor, intermediate, normal and ultrarapid CYP2D6 metabolizers were 0.18 ng/ml, 0.38 ng/ml, 0.56 ng/ml and 0.67 ng/ml, respectively. Ultrarapid CYP2D6 metabolizers were more likely than other groups to report a clinically relevant change in cold sweats, hot flash, mood swings, being irritable, as well as the overall modified FACT-ES score, after taking tamoxifen. The 6-month tamoxifen discontinuation rates among poor, intermediate, normal, and ultrarapid CYP2D6 metabolizers were 25.7%, 23.6%, 28.6%, and 44.4%, respectively. Among those who continued and finished the 6-month tamoxifen intervention, the mean change in dense area among poor, intermediate, normal, and ultrarapid CYP2D6 metabolizers were −0.8 cm2, −4.5 cm2, −4.1 cm2, and −8.0 cm2 respectively. Conclusions: Poor CYP2D6 metabolizers are likely to experience an impaired response to tamoxifen, measured through mammographic density reduction. In contrast, ultrarapid CYP2D6 metabolizers are at risk for exaggerated response with pronounced adverse effects that may lead to treatment discontinuation.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  • Kiel, C, et al. (author)
  • A Circulating MicroRNA Profile in a Laser-Induced Mouse Model of Choroidal Neovascularization
  • 2020
  • In: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 21:8
  • Journal article (peer-reviewed)abstract
    • Choroidal neovascularization (CNV) is a pathological process in which aberrant blood vessels invade the subretinal space of the mammalian eye. It is a characteristic feature of the prevalent neovascular age-related macular degeneration (nAMD). Circulating microRNAs (cmiRNAs) are regarded as potentially valuable biomarkers for various age-related diseases, including nAMD. Here, we investigated cmiRNA expression in an established laser-induced CNV mouse model. Upon CNV induction in C57Bl/6 mice, blood-derived cmiRNAs were initially determined globally by RNA next generation sequencing, and the most strongly dysregulated cmiRNAs were independently replicated by quantitative reverse transcription PCR (RT-qPCR) in blood, retinal, and retinal pigment epithelium (RPE)/choroidal tissue. Our findings suggest that two miRNAs, mmu-mir-486a-5p and mmur-mir-92a-3p, are consistently dysregulated during CNV formation. Furthermore, in functional in vitro assays, a significant impact of mmu-mir-486a-5p and mmu-mir-92a-3p on murine microglial cell viability was observed, while mmu-mir-92a-3p also showed an impact on microglial mobility. Taken together, we report a robust dysregulation of two miRNAs in blood and RPE/choroid after laser-induced initiation of CNV lesions in mice, highlighting their potential role in pathology and eventual therapy of CNV-associated complications.
  •  
22.
  • Kiel, C, et al. (author)
  • Pleiotropic Locus 15q24.1 Reveals a Gender-Specific Association with Neovascular but Not Atrophic Age-Related Macular Degeneration (AMD)
  • 2020
  • In: Cells. - : MDPI AG. - 2073-4409. ; 9:10
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have identified an abundance of genetic loci associated with complex traits and diseases. In contrast, in-depth characterization of an individual genetic signal is rarely available. Here, we focus on the genetic variant rs2168518 in 15q24.1 previously associated with age-related macular degeneration (AMD), but only with suggestive evidence. In a two-step procedure, we initially conducted a series of association analyses to further delineate the association of rs2168518 with AMD but also with other complex phenotypes by using large independent datasets from the International AMD Genomics Consortium (IAMDGC) and the UK Biobank. We then performed a functional annotation with reference to gene expression regulation based on data from the Genotype-Tissue Expression (GTEx) project and RegulomeDB. Association analysis revealed a gender-specific association with male AMD patients and an association predominantly with choroidal neovascularization. Further, the AMD association colocalizes with an association signal of several blood pressure-related phenotypes and with the gene expression regulation of CYP1A1, a member of the cytochrome P450 superfamily of monooxygenases. Functional annotation revealed altered transcription factor (TF) binding sites for gender-specific TFs, including SOX9 and SRY. In conclusion, the pleiotropic 15q24.1 association signal suggests a shared mechanism between blood pressure regulation and choroidal neovascularization with a potential involvement of CYP1A1.
  •  
23.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view