SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Groot Colin) "

Sökning: WFRF:(Groot Colin)

  • Resultat 1-25 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ossenkoppele, Rik, et al. (författare)
  • Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline
  • 2022
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 28:11, s. 2381-2387
  • Tidskriftsartikel (refereegranskat)abstract
    • A major unanswered question in the dementia field is whether cognitively unimpaired individuals who harbor both Alzheimer's disease neuropathological hallmarks (that is, amyloid-β plaques and tau neurofibrillary tangles) can preserve their cognition over time or are destined to decline. In this large multicenter amyloid and tau positron emission tomography (PET) study (n = 1,325), we examined the risk for future progression to mild cognitive impairment and the rate of cognitive decline over time among cognitively unimpaired individuals who were amyloid PET-positive (A+) and tau PET-positive (T+) in the medial temporal lobe (A+TMTL+) and/or in the temporal neocortex (A+TNEO-T+) and compared them with A+T- and A-T- groups. Cox proportional-hazards models showed a substantially increased risk for progression to mild cognitive impairment in the A+TNEO-T+ (hazard ratio (HR) = 19.2, 95% confidence interval (CI) = 10.9-33.7), A+TMTL+ (HR = 14.6, 95% CI = 8.1-26.4) and A+T- (HR = 2.4, 95% CI = 1.4-4.3) groups versus the A-T- (reference) group. Both A+TMTL+ (HR = 6.0, 95% CI = 3.4-10.6) and A+TNEO-T+ (HR = 7.9, 95% CI = 4.7-13.5) groups also showed faster clinical progression to mild cognitive impairment than the A+T- group. Linear mixed-effect models indicated that the A+TNEO-T+ (β = -0.056 ± 0.005, T = -11.55, P < 0.001), A+TMTL+ (β = -0.024 ± 0.005, T = -4.72, P < 0.001) and A+T- (β = -0.008 ± 0.002, T = -3.46, P < 0.001) groups showed significantly faster longitudinal global cognitive decline compared to the A-T- (reference) group (all P < 0.001). Both A+TNEO-T+ (P < 0.001) and A+TMTL+ (P = 0.002) groups also progressed faster than the A+T- group. In summary, evidence of advanced Alzheimer's disease pathological changes provided by a combination of abnormal amyloid and tau PET examinations is strongly associated with short-term (that is, 3-5 years) cognitive decline in cognitively unimpaired individuals and is therefore of high clinical relevance.
  •  
2.
  • Altomare, Daniele, et al. (författare)
  • Applying the ATN scheme in a memory clinic population : The ABIDE project
  • 2019
  • Ingår i: Neurology. - 1526-632X. ; 93:17, s. 1635-1646
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To apply the ATN scheme to memory clinic patients, to assess whether it discriminates patient populations with specific features. METHODS: We included 305 memory clinic patients (33% subjective cognitive decline [SCD]: 60 ± 9 years, 61% M; 19% mild cognitive impairment [MCI]: 68 ± 9 years, 68% M; 48% dementia: 66 ± 10 years, 58% M) classified for positivity (±) of amyloid (A) ([18F]Florbetaben PET), tau (T) (CSF p-tau), and neurodegeneration (N) (medial temporal lobe atrophy). We assessed ATN profiles' demographic, clinical, and cognitive features at baseline, and cognitive decline over time. RESULTS: The proportion of A+T+N+ patients increased with syndrome severity (from 1% in SCD to 14% in MCI and 35% in dementia), while the opposite was true for A-T-N- (from 48% to 19% and 6%). Compared to A-T-N-, patients with the Alzheimer disease profiles (A+T+N- and A+T+N+) were older (both p < 0.05) and had a higher prevalence of APOE ε4 (both p < 0.05) and lower Mini-Mental State Examination (MMSE) (both p < 0.05), memory (both p < 0.05), and visuospatial abilities (both p < 0.05) at baseline. Non-Alzheimer profiles A-T-N+ and A-T+N+ showed more severe white matter hyperintensities (both p < 0.05) and worse language performance (both p < 0.05) than A-T-N-. A linear mixed model showed faster decline on MMSE over time in A+T+N- and A+T+N+ (p = 0.059 and p < 0.001 vs A-T-N-), attributable mainly to patients without dementia. CONCLUSIONS: The ATN scheme identified different biomarker profiles with overlapping baseline features and patterns of cognitive decline. The large number of profiles, which may have different implications in patients with vs without dementia, poses a challenge to the application of the ATN scheme.
  •  
3.
  • Bocancea, Diana I., et al. (författare)
  • Determinants of cognitive and brain resilience to tau pathology: a longitudinal analysis
  • 2023
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 146:9, s. 3719-3734
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanisms of resilience against tau pathology in individuals across the Alzheimer’s disease spectrum are insufficiently understood. Longitudinal data are necessary to reveal which factors relate to preserved cognition (i.e. cognitive resilience) and brain structure (i.e. brain resilience) despite abundant tau pathology, and to clarify whether these associations are cross-sectional or longitudinal. We employed a longitudinal study design to investigate the role of several demographic, biological and brain structural factors in yielding cognitive and brain resilience to tau pathology as measured with PET.In this multicenter study, we included 366 amyloid-β-positive individuals with mild cognitive impairment or Alzheimer’s disease-dementia with baseline [18F]flortaucipir-PET and longitudinal cognitive assessments. A subset (n = 200) additionally underwent longitudinal structural MRI. We used linear mixed-effects models with global cognition and cortical thickness as dependent variables to investigate determinants of cognitive resilience and brain resilience, respectively. Models assessed whether age, sex, years of education, APOE-ε4 status, intracranial volume (and cortical thickness for cognitive resilience models) modified the association of tau pathology with cognitive decline or cortical thinning.We found that the association between higher baseline tau-PET levels (quantified in a temporal meta-region of interest) and rate of cognitive decline (measured with repeated Mini-Mental State Examination) was adversely modified by older age (Stβinteraction = -0.062, P = 0.032), higher education level (Stβinteraction = -0.072, P = 0.011) and higher intracranial volume (Stβinteraction = -0.07, P = 0.016). Younger age, higher education and greater cortical thickness were associated with better cognitive performance at baseline. Greater cortical thickness was furthermore associated with slower cognitive decline independent of tau burden. Higher education also modified the negative impact of tau-PET on cortical thinning, while older age was associated with higher baseline cortical thickness and slower rate of cortical thinning independent of tau. Our analyses revealed no (cross-sectional or longitudinal) associations for sex and APOE-ε4 status on cognition and cortical thickness.In this longitudinal study of clinically impaired individuals with underlying Alzheimer’s disease neuropathological changes, we identified education as the most robust determinant of both cognitive and brain resilience against tau pathology. The observed interaction with tau burden on cognitive decline suggests that education may be protective against cognitive decline and brain atrophy at lower levels of tau pathology, with a potential depletion of resilience resources with advancing pathology. Finally, we did not find major contributions of sex to brain nor cognitive resilience, suggesting that previous links between sex and resilience might be mainly driven by cross-sectional differences.
  •  
4.
  • Choi, Seo Eun, et al. (författare)
  • Development and validation of language and visuospatial composite scores in ADNI
  • 2020
  • Ingår i: Alzheimer's and Dementia: Translational Research and Clinical Interventions. - : Wiley. - 2352-8737. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Composite scores may be useful to summarize overall language or visuospatial functioning in studies of older adults. Methods:We used item response theory to derive composite measures for language (ADNI-Lan) and visuospatial functioning (ADNI-VS) from the cognitive battery administered in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We evaluated the scores among groups of people with normal cognition, mild cognitive impairment (MCI), and Alzheimer’s disease (AD) in terms of responsiveness to change, association with imaging findings, and ability to differentiate between MCI participants who progressed to AD dementia and those who did not progress. Results: ADNI-Lan andADNI-VSwere able to detect change over time and predict conversion fromMCI toAD. Theywere associated with most of the pre-specified magnetic resonance imaging measures. ADNI-Lan had strong associations with a cerebrospinal fluid biomarker pattern. Discussion: ADNI-Lan and ADNI-VS may be useful composites for language and visuospatial functioning in ADNI.
  •  
5.
  • Crane, Paul K., et al. (författare)
  • Cognitively defined Alzheimer's dementia subgroups have distinct atrophy patterns
  • Ingår i: Alzheimer's and Dementia. - 1552-5260.
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: We sought to determine structural magnetic resonance imaging (MRI) characteristics across subgroups defined based on relative cognitive domain impairments using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and to compare cognitively defined to imaging-defined subgroups. METHODS: We used data from 584 people with Alzheimer's disease (AD) (461 amyloid positive, 123 unknown amyloid status) and 118 amyloid-negative controls. We used voxel-based morphometry to compare gray matter volume (GMV) for each group compared to controls and to AD-Memory. RESULTS: There was pronounced bilateral lower medial temporal lobe atrophy with relative cortical sparing for AD-Memory, lower left hemisphere GMV for AD-Language, anterior lower GMV for AD-Executive, and posterior lower GMV for AD-Visuospatial. Formal asymmetry comparisons showed substantially more asymmetry in the AD-Language group than any other group (p = 1.15 × 10−10). For overlap between imaging-defined and cognitively defined subgroups, AD-Memory matched up with an imaging-defined limbic predominant group. DISCUSSION: MRI findings differ across cognitively defined AD subgroups.
  •  
6.
  • de Wilde, Arno, et al. (författare)
  • Assessment of the appropriate use criteria for amyloid PET in an unselected memory clinic cohort : The ABIDE project
  • 2019
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260.
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The objective of this study was to assess the usefulness of the appropriate use criteria (AUC) for amyloid imaging in an unselected cohort. Methods: We calculated sensitivity and specificity of appropriate use (increased confidence and management change), as defined by Amyloid Imaging Taskforce in the AUC, and other clinical utility outcomes. Furthermore, we compared differences in post–positron emission tomography diagnosis and management change between “AUC-consistent” and “AUC-inconsistent” patients. Results: Almost half (250/507) of patients were AUC-consistent. In both AUC-consistent and AUC-inconsistent patients, post–positron emission tomography diagnosis (28%–21%) and management (32%–17%) change was substantial. The Amyloid Imaging Taskforce's definition of appropriate use occurred in 55/507 (13%) patients, detected by the AUC with a sensitivity of 93%, and a specificity of 56%. Diagnostic changes occurred independently of AUC status (sensitivity: 57%, specificity: 53%). Discussion: The current AUC are not sufficiently able to discriminate between patients who will benefit from amyloid positron emission tomography and those who will not.
  •  
7.
  • Groot, Colin, et al. (författare)
  • A biomarker profile of elevated CSF p-tau with normal tau PET is associated with increased tau accumulation rates on PET in early Alzheimer’s disease
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Different tau biomarkers become abnormal at different stages of Alzheimer’s disease (AD), with CSF p-tau typically being elevated at subthreshold levels of tau-PET binding. To capitalize on the temporal order of tau biomarker-abnormality and capture the earliest changes of tau accumulation, we selected a group of amyloid-β-positive (A+) individuals with elevated CSF p-tau levels but negative tau-PET scans and assessed longitudinal changes in tau-PET, cortical thickness and cognitive decline. Method: Individuals without dementia (i.e., cognitively unimpaired (CU) or mild cognitive impairment, n=231) were selected from the BioFINDER-2 study. These subjects were categorized into biomarker groups based on Gaussian mixture modelling to determine cut-offs for abnormal CSF Aβ42/40 (A; <0.078), CSF p-tau217 (P; >110 pg/ml) and [18F]RO948 tau-PET SUVR within a temporal meta-ROI (T; SUVR >1.40). Resulting groups were: A+P-T- (concordant, n=30), A+P+T- (discordant, n=48) and A+P+T+ (concordant, n=18). We additionally used 135 A- CU individuals (A- CU) as a reference group (Tables 1 and 2). Differences in annual change in regional tau-PET SUVR, cortical thickness and cognition between the A+P+T- group and the other groups were assessed using general linear models, adjusted for age, sex, clinical diagnosis and (for cognitive measures) education. Result: Longitudinal change in tau-PET was faster in the A+P+T- group than in the A- CU and A+P-T- groups across medial temporal and neocortical regions, with the medial temporal increases being more pronounced. The A+P+T- group showed slower rate of increases in tau-PET compared to the A+P+T+ group, primarily in neocortical regions (Figures 1 and 2). We did not detect differences in yearly change in cortical thickness (Figure 3) or in cognitive decline (Figure 3) between the A+P+T- and A+P-T- groups. The A+P+T+ group, however, showed faster cognitive decline compared to all other groups. Conclusion: These findings suggest that the A+P+T- biomarker profile is associated with early tau accumulation, and with relative sparing of cortical thinning and cognitive decline compared to A+P+T+ individuals. Therefore, the A+P+T- group represents an interesting target-group for early anti-tau interventions and for examining the emergence of tau aggregates in early AD.
  •  
8.
  • Groot, Colin, et al. (författare)
  • Clinical phenotype, atrophy, and small vessel disease in APOEε2 carriers with Alzheimer disease
  • 2018
  • Ingår i: Neurology. - 1526-632X. ; 91:20, s. 1851-1859
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To examine the clinical phenotype, gray matter atrophy patterns, and small vessel disease in patients who developed prodromal or probable Alzheimer disease dementia, despite carrying the protective APOEε2 allele. METHODS: We included 36 β-amyloid-positive (by CSF or PET) APOEε2 carriers (all ε2/ε3) with mild cognitive impairment or dementia due to Alzheimer disease who were matched for age and diagnosis (ratio 1:2) to APOEε3 homozygotes and APOEε4 carriers (70% ε3/ε4 and 30% ε4/ε4). We assessed neuropsychological performance across 4 cognitive domains (memory, attention, executive, and language functions), performed voxelwise and region of interest analyses of gray matter atrophy on T1-weighted MRI, used fluid-attenuated inversion recovery images to automatically quantify white matter hyperintensity volumes, and assessed T2*-weighted images to identify microbleeds. Differences in cognitive domain scores, atrophy, and white matter hyperintensities between ε2 carriers, ε3 homozygotes, and ε4 carriers were assessed using analysis of variance analyses, and Pearson χ2 tests were used to examine differences in prevalence of microbleeds. RESULTS: We found that ε2 carriers performed worse on nonmemory domains compared to both ε3 homozygotes and ε4 carriers but better on memory compared to ε4 carriers. Voxelwise T1-weighted MRI analyses showed asymmetric (left > right) temporoparietal-predominant atrophy with subtly less involvement of medial-temporal structures in ε2 carriers compared to ε4 carriers. Finally, ε2 carriers had larger total white matter hyperintensity volumes compared to ε4 carriers (mean 10.4 vs 7.3 mL) and a higher prevalence of microbleeds compared to ε3 homozygotes (37.5% vs 18.3%). CONCLUSION: APOEε2 carriers who develop Alzheimer disease despite carrying the protective allele display a nonamnestic clinical phenotype with more severe small vessel disease.
  •  
9.
  • Groot, Colin, et al. (författare)
  • Diagnostic and prognostic performance to detect Alzheimer's disease and clinical progression of a novel assay for plasma p-tau217
  • 2022
  • Ingår i: Alzheimer's Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 14:1, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Recent advances in disease-modifying treatments highlight the need for accurately identifying individuals in early Alzheimer's disease (AD) stages and for monitoring of treatment effects. Plasma measurements of phosphorylated tau (p-tau) are a promising biomarker for AD, but different assays show varying diagnostic and prognostic accuracies. The objective of this study was to determine the clinical performance of a novel plasma p-tau217 (p-tau217) assay, p-tau217+ Janssen, and perform a head-to-head comparison to an established assay, plasma p-tau217 Lilly, within two independent cohorts . METHODS: The study consisted of two cohorts, cohort 1 (27 controls and 25 individuals with mild-cognitive impairment [MCI]) and cohort 2 including 147 individuals with MCI at baseline who were followed for an average of 4.92 (SD 2.09) years. Receiver operating characteristic analyses were used to assess the performance of both assays to detect amyloid-β status (+/-) in CSF, distinguish MCI from controls, and identify subjects who will convert from MCI to AD dementia. General linear and linear mixed-effects analyses were used to assess the associations between p-tau and baseline, and annual change in Mini-Mental State Examination (MMSE) scores. Spearman correlations were used to assess the associations between the two plasma measures, and Bland-Altmann plots were examined to assess the agreement between the assays. RESULTS: Both assays showed similar performance in detecting amyloid-β status in CSF (plasma p-tau217+ Janssen AUC = 0.91 vs plasma p-tau217 Lilly AUC = 0.89), distinguishing MCI from controls (plasma p-tau217+ Janssen AUC = 0.91 vs plasma p-tau217 Lilly AUC = 0.91), and predicting future conversion from MCI to AD dementia (plasma p-tau217+ Janssen AUC = 0.88 vs p-tau217 Lilly AUC = 0.89). Both assays were similarly related to baseline (plasma p-tau217+ Janssen rho = -0.39 vs p-tau217 Lilly rho = -0.35), and annual change in MMSE scores (plasma p-tau217+ Janssenr = -0.45 vs p-tau217 Lillyr = -0.41). Correlations between the two plasma measures were rho = 0.69, p < 0.001 in cohort 1 and rho = 0.70, p < 0.001 in cohort 2. Bland-Altmann plots revealed good agreement between plasma p-tau217+ Janssen and plasma p-tau217 Lilly in both cohorts (cohort 1, 51/52 [98%] within 95%CI; cohort 2, 139/147 [95%] within 95%CI). CONCLUSIONS: Taken together, our results indicate good diagnostic and prognostic performance of the plasma p-tau217+ Janssen assay, similar to the p-tau217 Lilly assay.
  •  
10.
  • Groot, Colin, et al. (författare)
  • Differential patterns of gray matter volumes and associated gene expression profiles in cognitively-defined Alzheimer's disease subgroups
  • 2021
  • Ingår i: NeuroImage: Clinical. - : Elsevier BV. - 2213-1582. ; 30
  • Tidskriftsartikel (refereegranskat)abstract
    • The clinical presentation of Alzheimer's disease (AD) varies widely across individuals but the neurobiological mechanisms underlying this heterogeneity are largely unknown. Here, we compared regional gray matter (GM) volumes and associated gene expression profiles between cognitively-defined subgroups of amyloid-β positive individuals clinically diagnosed with AD dementia (age: 66 ± 7, 47% male, MMSE: 21 ± 5). All participants underwent neuropsychological assessment with tests covering memory, executive-functioning, language and visuospatial-functioning domains. Subgroup classification was achieved using a psychometric framework that assesses which cognitive domain shows substantial relative impairment compared to the intra-individual average across domains, which yielded the following subgroups in our sample; AD-Memory (n = 41), AD-Executive (n = 117), AD-Language (n = 33), AD-Visuospatial (n = 171). We performed voxel-wise contrasts of GM volumes derived from 3Tesla structural MRI between subgroups and controls (n = 127, age 58 ± 9, 42% male, MMSE 29 ± 1), and observed that differences in regional GM volumes compared to controls closely matched the respective cognitive profiles. Specifically, we detected lower medial temporal lobe GM volumes in AD-Memory, lower fronto-parietal GM volumes in AD-Executive, asymmetric GM volumes in the temporal lobe (left < right) in AD-Language, and lower GM volumes in posterior areas in AD-Visuospatial. In order to examine possible biological drivers of these differences in regional GM volumes, we correlated subgroup-specific regional GM volumes to brain-wide gene expression profiles based on a stereotactic characterization of the transcriptional architecture of the human brain as provided by the Allen human brain atlas. Gene-set enrichment analyses revealed that variations in regional expression of genes involved in processes like mitochondrial respiration and metabolism of proteins were associated with patterns of regional GM volume across multiple subgroups. Other gene expression vs GM volume-associations were only detected in particular subgroups, e.g., genes involved in the cell cycle for AD-Memory, specific sets of genes related to protein metabolism in AD-Language, and genes associated with modification of gene expression in AD-Visuospatial. We conclude that cognitively-defined AD subgroups show neurobiological differences, and distinct biological pathways may be involved in the emergence of these differences.
  •  
11.
  • Groot, Colin, et al. (författare)
  • Differential trajectories of hypometabolism across cognitively-defined Alzheimer's disease subgroups
  • 2021
  • Ingår i: NeuroImage: Clinical. - : Elsevier BV. - 2213-1582. ; 31
  • Tidskriftsartikel (refereegranskat)abstract
    • Disentangling biologically distinct subgroups of Alzheimer's disease (AD) may facilitate a deeper understanding of the neurobiology underlying clinical heterogeneity. We employed longitudinal [18F]FDG-PET standardized uptake value ratios (SUVRs) to map hypometabolism across cognitively-defined AD subgroups. Participants were 384 amyloid-positive individuals with an AD dementia diagnosis from ADNI who had a total of 1028 FDG-scans (mean time between first and last scan: 1.6 ± 1.8 years). These participants were categorized into subgroups on the basis of substantial impairment at time of dementia diagnosis in a specific cognitive domain relative to the average across domains. This approach resulted in groups of AD-Memory (n = 135), AD-Executive (n = 8), AD-Language (n = 22), AD-Visuospatial (n = 44), AD-Multiple Domains (n = 15) and AD-No Domains (for whom no domain showed substantial relative impairment; n = 160). Voxelwise contrasts against controls revealed that all AD-subgroups showed progressive hypometabolism compared to controls across temporoparietal regions at time of AD diagnosis. Voxelwise and regions-of-interest (ROI)-based linear mixed model analyses revealed there were also subgroup-specific hypometabolism patterns and trajectories. The AD-Memory group had more pronounced hypometabolism compared to all other groups in the medial temporal lobe and posterior cingulate, and faster decline in metabolism in the medial temporal lobe compared to AD-Visuospatial. The AD-Language group had pronounced lateral temporal hypometabolism compared to all other groups, and the pattern of metabolism was also more asymmetrical (left < right) than all other groups. The AD-Visuospatial group had faster decline in metabolism in parietal regions compared to all other groups, as well as faster decline in the precuneus compared to AD-Memory and AD-No Domains. Taken together, in addition to a common pattern, cognitively-defined subgroups of people with AD dementia show subgroup-specific hypometabolism patterns, as well as differences in trajectories of metabolism over time. These findings provide support to the notion that cognitively-defined subgroups are biologically distinct.
  •  
12.
  •  
13.
  • Groot, Colin, et al. (författare)
  • Latent atrophy factors related to phenotypical variants of posterior cortical atrophy
  • 2020
  • Ingår i: Neurology. - 1526-632X. ; 95:12, s. 1672-1685
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To determine whether atrophy relates to phenotypical variants of posterior cortical atrophy (PCA) recently proposed in clinical criteria (i.e., dorsal, ventral, dominant-parietal, and caudal) we assessed associations between latent atrophy factors and cognition. METHODS: We employed a data-driven Bayesian modeling framework based on latent Dirichlet allocation to identify latent atrophy factors in a multicenter cohort of 119 individuals with PCA (age 64 ± 7 years, 38% male, Mini-Mental State Examination 21 ± 5, 71% β-amyloid positive, 29% β-amyloid status unknown). The model uses standardized gray matter density images as input (adjusted for age, sex, intracranial volume, MRI scanner field strength, and whole-brain gray matter volume) and provides voxelwise probabilistic maps for a predetermined number of atrophy factors, allowing every individual to express each factor to a degree without a priori classification. Individual factor expressions were correlated to 4 PCA-specific cognitive domains (object perception, space perception, nonvisual/parietal functions, and primary visual processing) using general linear models. RESULTS: The model revealed 4 distinct yet partially overlapping atrophy factors: right-dorsal, right-ventral, left-ventral, and limbic. We found that object perception and primary visual processing were associated with atrophy that predominantly reflects the right-ventral factor. Furthermore, space perception was associated with atrophy that predominantly represents the right-dorsal and right-ventral factors. However, individual participant profiles revealed that the large majority expressed multiple atrophy factors and had mixed clinical profiles with impairments across multiple domains, rather than displaying a discrete clinical-radiologic phenotype. CONCLUSION: Our results indicate that specific brain behavior networks are vulnerable in PCA, but most individuals display a constellation of affected brain regions and symptoms, indicating that classification into 4 mutually exclusive variants is unlikely to be clinically useful.
  •  
14.
  • Groot, Colin, et al. (författare)
  • Mesial temporal tau is related to worse cognitive performance and greater neocortical tau load in amyloid-β–negative cognitively normal individuals
  • 2021
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 97, s. 41-48
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined whether mesial temporal (Me) tau relates to cognitive performance in 47 amyloid-β (Aβ)-negative, cognitively normal older adults (>60 years old). Me-tau was measured using [18F]flortaucipir–positron emission tomography standardized uptake value ratio. The effect of continuous and categorical (stratified at standardized uptake value ratio = 1.2 [21% Me-positive]) Me-tau on cognition (mini-mental state examination, pre-Alzheimer's cognitive composite, a memory composite, and a nonmemory composite score) was examined using general linear models, and associations between Me-tau and [18F]flortaucipir signal in the neocortex were assessed using voxelwise regressions (continuous) and voxelwise contrasts (categorical). In addition, we assessed the effect of age and Aβ burden on Me-tau. Both continuous and categorical Me-tau was associated with worse cognitive performance across all tests and with higher lateral temporal and parietal [18F]flortaucipir signal. Furthermore, we observed a marginal association between Me-tau and age, whereas there was no association with Aβ burden. Our findings indicate that Me-tau in Aβ-negative cognitively normal individuals, which is likely age-related (i.e., primary age-related tauopathy), might not be as benign as commonly thought.
  •  
15.
  • Groot, Colin, et al. (författare)
  • Phospho-tau with subthreshold tau-PET predicts increased tau accumulation rates in amyloid-positive individuals
  • 2023
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 146:4, s. 1580-1591
  • Tidskriftsartikel (refereegranskat)abstract
    • Different tau biomarkers become abnormal at different stages of Alzheimer's disease, with CSF phospho-tau typically becoming elevated at subthreshold levels of tau-PET binding. To capitalize on the temporal order of tau biomarker-abnormality and capture the earliest changes of tau accumulation, we implemented an observational study design to examine longitudinal changes in Tau-PET, cortical thickness and cognitive decline in amyloid-β-positive (A+) individuals with elevated CSF P-tau levels (P+) but subthreshold Tau-PET retention (T-). To this end, individuals without dementia (i.e., cognitively unimpaired or mild cognitive impairment, N = 231) were selected from the BioFINDER-2 study. Amyloid-β-positive (A+) individuals were categorized into biomarker groups based on cut-offs for abnormal CSF P-tau217 and [18F]RO948 (Tau) PET, yielding groups of tau-concordant-negative (A + P-T-; n = 30), tau-discordant (i.e., A + P+T-; n = 48) and tau-concordant-positive (A + P+T+; n = 18) individuals. In addition, 135 amyloid-β-negative, tau-negative, cognitively unimpaired individuals served as controls. Differences in annual change in regional Tau-PET, cortical thickness and cognition between the groups were assessed using general linear models, adjusted for age, sex, clinical diagnosis and (for cognitive measures only) education. Mean follow-up time was ∼2 years. Longitudinal increase in Tau-PET was faster in the A + P+T- group than in the control and A + P-T- groups across medial temporal and neocortical regions, with the highest accumulation rates in the medial temporal lobe. The A + P+T- group showed a slower rate of increases in tau-PET compared to the A + P+T+ group, primarily in neocortical regions. We did not detect differences in yearly change in cortical thickness or in cognitive decline between the A + P+T- and A + P-T- groups. The A + P+T+ group, however, showed faster cognitive decline compared to all other groups. Altogether, these findings suggest that the A + P+T- biomarker profile in persons without dementia is associated with an isolated effect on increased Tau-PET accumulation rates but not on cortical thinning and cognitive decline. While this suggests that the tau-discordant biomarker profile is not strongly associated with short-term clinical decline, this group does represent an interesting population for monitoring effects of interventions with disease modifying agents on tau accumulation in early Alzheimer's disease, and for examining the emergence of tau aggregates in Alzheimer's disease. Further, we suggest to update the AT(N) criteria for Alzheimer's disease biomarker classification to APT(N).
  •  
16.
  • Groot, Colin, et al. (författare)
  • Tau PET Imaging in Neurodegenerative Disorders
  • 2022
  • Ingår i: Journal of nuclear medicine : official publication, Society of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505. ; 63, s. 20-26
  • Tidskriftsartikel (refereegranskat)abstract
    • The advent of PET ligands that bind tau pathology has enabled the quantification and visualization of tau pathology in aging and in Alzheimer disease (AD). There is strong evidence from neuropathologic studies that the most widely used tau PET tracers (i.e., 18F-flortaucipir, 18F-MK6240, 18F-RO948, and 18F-PI2620) bind tau aggregates formed in AD in the more advanced (i.e., ≥IV) Braak stages. However, tracer binding in most non-AD tauopathies is weaker and overlaps to a large extent with known off-target binding regions, limiting the quantification and visualization of non-AD tau pathology in vivo. Off-target binding is generally present in the substantia nigra, basal ganglia, pituitary, choroid plexus, longitudinal sinuses, meninges, or skull in a tracer-specific manner. Most cross-sectional studies use the inferior aspect of the cerebellar gray matter as a reference region, whereas for longitudinal analyses, an eroded white matter reference region is sometimes selected. No consensus has yet been reached on whether to use partial-volume correction of tau PET data. Although an increased neocortical tau PET signal is rare in cognitively unimpaired individuals, even in amyloid-β-positive cases, such a signal holds important prognostic information because preliminary data suggest that an elevated tau PET signal predicts cognitive decline over time. Also, in symptomatic stages of AD (i.e., mild cognitive impairment or AD dementia), tau PET shows great potential as a prognostic marker because an elevated baseline tau PET retention forecasts future cognitive decline and brain atrophy. For differential diagnostic use, the primary utility of tau PET is to differentiate AD dementia from other neurodegenerative diseases, as is in line with the conditions for the approval of 18F-flortaucipir by the U.S. Food and Drug Administration for clinical use. The differential diagnostic performance drops substantially at the mild-cognitive-impairment stage of AD, and there is no sufficient evidence for detection of sporadic non-AD primary tauopathies at the individual level for any of the currently available tau PET tracers. In conclusion, while the field is currently addressing outstanding methodologic issues, tau PET is gradually moving toward clinical application as a diagnostic and possibly prognostic marker in dementia expert centers and as a tool for selecting participants, assessing target engagement, and monitoring treatment effects in clinical trials.
  •  
17.
  • Leijenaar, Jolien F., et al. (författare)
  • Comorbid amyloid-β pathology affects clinical and imaging features in VCD
  • 2020
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 16:2, s. 354-364
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: To date, the clinical relevance of comorbid amyloid-β (Aβ) pathology in patients with vascular cognitive disorders (VCD) is largely unknown. Methods: We included 218 VCD patients with available cerebrospinal fluid Aβ42 levels. Patients were divided into Aβ+ mild-VCD (n = 84), Aβ− mild-VCD (n = 68), Aβ+ major-VCD (n = 31), and Aβ− major-VCD (n = 35). We measured depression with the Geriatric Depression Scale, cognition with a neuropsychological test battery and derived white matter hyperintensities (WMH) and gray matter atrophy from MRI. Results: Aβ− patients showed more depressive symptoms than Aβ+. In the major-VCD group, Aβ− patients performed worse on attention (P =.02) and executive functioning (P =.008) than Aβ+. We found no cognitive differences in patients with mild VCD. In the mild-VCD group, Aβ− patients had more WMH than Aβ+ patients, whereas conversely, in the major-VCD group, Aβ+ patients had more WMH. Atrophy patterns did not differ between Aβ+ and Aβ− VCD group. Discussion: Comorbid Aβ pathology affects the manifestation of VCD, but effects differ by severity of VCD.
  •  
18.
  • Lu, Yingchang, et al. (författare)
  • New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.
  •  
19.
  • Marouli, Eirini, et al. (författare)
  • Rare and low-frequency coding variants alter human adult height
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 542:7640, s. 186-190
  • Tidskriftsartikel (refereegranskat)abstract
    • Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
  •  
20.
  • Mattsson, Niklas, et al. (författare)
  • Prevalence of the apolipoprotein E epsilon 4 allele in amyloid beta positive subjects across the spectrum of Alzheimers disease
  • 2018
  • Ingår i: Alzheimer's & Dementia. - : ELSEVIER SCIENCE INC. - 1552-5260 .- 1552-5279. ; 14:7, s. 913-924
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Apolipoprotein E (APOE) epsilon 4 is the major genetic risk factor for Alzheimers disease (AD), but its prevalence is unclear because earlier studies did not require biomarker evidence of amyloid beta(A beta) pathology. Methods: We included 3451 A beta+ subjects (853 AD-type dementia, 1810 mild cognitive impairment, and 788 cognitively normal). Generalized estimating equation models were used to assess APOE epsilon 4 prevalence in relation to age, sex, education, and geographical location. Results: The APOE epsilon 4 prevalence was 66% in AD-type dementia, 64% in mild cognitive impairment, and 51% in cognitively normal, and it decreased with advancing age in A beta+ cognitively normal and A beta+ mild cognitive impairment (P amp;lt;.05) but not in A beta+ AD dementia (P =.66). The prevalence was highest in Northern Europe but did not vary by sex or education. Discussion: The APOE E4 prevalence in AD was higher than that in previous studies, which did not require presence of A beta pathology. Furthermore, our results highlight disease heterogeneity related to age and geographical location. (C) 2018 the Alzheimers Association. Published by Elsevier Inc. All rights reserved.
  •  
21.
  • Mattsson, Niklas, et al. (författare)
  • Prevalence of the apolipoprotein E ε4 allele in amyloid β positive subjects across the spectrum of Alzheimer's disease
  • 2018
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 14:7, s. 913-924
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Apolipoprotein E (APOE) ε4 is the major genetic risk factor for Alzheimer's disease (AD), but its prevalence is unclear because earlier studies did not require biomarker evidence of amyloid β (Aβ) pathology. Methods: We included 3451 Aβ+ subjects (853 AD-type dementia, 1810 mild cognitive impairment, and 788 cognitively normal). Generalized estimating equation models were used to assess APOE ε4 prevalence in relation to age, sex, education, and geographical location. Results: The APOE ε4 prevalence was 66% in AD-type dementia, 64% in mild cognitive impairment, and 51% in cognitively normal, and it decreased with advancing age in Aβ+ cognitively normal and Aβ+ mild cognitive impairment (P <.05) but not in Aβ+ AD dementia (P =.66). The prevalence was highest in Northern Europe but did not vary by sex or education. Discussion: The APOE ε4 prevalence in AD was higher than that in previous studies, which did not require presence of Aβ pathology. Furthermore, our results highlight disease heterogeneity related to age and geographical location.
  •  
22.
  • Ossenkoppele, Rik, et al. (författare)
  • Accuracy of Tau Positron Emission Tomography as a Prognostic Marker in Preclinical and Prodromal Alzheimer Disease : A Head-to-Head Comparison against Amyloid Positron Emission Tomography and Magnetic Resonance Imaging
  • 2021
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149. ; 78:8, s. 961-971
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Tau positron emission tomography (PET) tracers have proven useful for the differential diagnosis of dementia, but their utility for predicting cognitive change is unclear. Objective: To examine the prognostic accuracy of baseline fluorine 18 (18F)-flortaucipir and [18F]RO948 (tau) PET in individuals across the Alzheimer disease (AD) clinical spectrum and to perform a head-to-head comparison against established magnetic resonance imaging (MRI) and amyloid PET markers. Design, Setting, and Participants: This prognostic study collected data from 8 cohorts in South Korea, Sweden, and the US from June 1, 2014, to February 28, 2021, with a mean (SD) follow-up of 1.9 (0.8) years. A total of 1431 participants were recruited from memory clinics, clinical trials, or cohort studies; 673 were cognitively unimpaired (CU group; 253 [37.6%] positive for amyloid-β [Aβ]), 443 had mild cognitive impairment (MCI group; 271 [61.2%] positive for Aβ), and 315 had a clinical diagnosis of AD dementia (315 [100%] positive for Aβ). Exposures: [18F]Flortaucipir PET in the discovery cohort (n = 1135) or [18F]RO948 PET in the replication cohort (n = 296), T1-weighted MRI (n = 1431), and amyloid PET (n = 1329) at baseline and repeated Mini-Mental State Examination (MMSE) evaluation. Main Outcomes and Measures: Baseline [18F]flortaucipir/[18F]RO948 PET retention within a temporal region of interest, MRI-based AD-signature cortical thickness, and amyloid PET Centiloids were used to predict changes in MMSE using linear mixed-effects models adjusted for age, sex, education, and cohort. Mediation/interaction analyses tested whether associations between baseline tau PET and cognitive change were mediated by baseline MRI measures and whether age, sex, and APOE genotype modified these associations. Results: Among 1431 participants, the mean (SD) age was 71.2 (8.8) years; 751 (52.5%) were male. Findings for [18F]flortaucipir PET predicted longitudinal changes in MMSE, and effect sizes were stronger than for AD-signature cortical thickness and amyloid PET across all participants (R2, 0.35 [tau PET] vs 0.24 [MRI] vs 0.17 [amyloid PET]; P <.001, bootstrapped for difference) in the Aβ-positive MCI group (R2, 0.25 [tau PET] vs 0.15 [MRI] vs 0.07 [amyloid PET]; P <.001, bootstrapped for difference) and in the Aβ-positive CU group (R2, 0.16 [tau PET] vs 0.08 [MRI] vs 0.08 [amyloid PET]; P <.001, bootstrapped for difference). These findings were replicated in the [18F]RO948 PET cohort. MRI mediated the association between [18F]flortaucipir PET and MMSE in the groups with AD dementia (33.4% [95% CI, 15.5%-60.0%] of the total effect) and Aβ-positive MCI (13.6% [95% CI, 0.0%-28.0%] of the total effect), but not the Aβ-positive CU group (3.7% [95% CI, -17.5% to 39.0%]; P =.71). Age (t = -2.28; P =.02), but not sex (t = 0.92; P =.36) or APOE genotype (t = 1.06; P =.29) modified the association between baseline [18F]flortaucipir PET and cognitive change, such that older individuals showed faster cognitive decline at similar tau PET levels. Conclusions and Relevance: The findings of this prognostic study suggest that tau PET is a promising tool for predicting cognitive change that is superior to amyloid PET and MRI and may support the prognostic process in preclinical and prodromal stages of AD.
  •  
23.
  • Ossenkoppele, Rik, et al. (författare)
  • Associations between the APOE-ε2 and APOE-ε4 alleles with resistance and resilience against Alzheimer's disease pathology
  • 2021
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: To examine associations between the APOE-ε2 and APOE-ε4 alleles and core Alzheimer's disease (AD) pathological hallmarks as measured by amyloid-β (Aβ) and tau PET in older individuals without dementia. METHOD: We analyzed data from 462 ADNI participants without dementia who underwent Aβ ([18 F]florbetapir or [18 F]florbetaben) and tau ([18 F]flortaucipir) PET, structural MRI and cognitive testing. Employing APOE-ε3 homozygotes as the reference group, associations between APOE-ε2 and APOE-ε4 carriership with global Aβ PET and regional tau PET measures (entorhinal cortex [ERC], inferior temporal cortex, and Braak-V/VI neocortical composite regions) were investigated using linear regression models. In a subset of 156 participants, we also investigated associations between APOE genotypeand regional tau accumulation over time using linear mixed models. Finally, we assessed whether Aβ mediated the cross-sectional and longitudinal associations between APOE genotype and tau. RESULT: Compared to APOE-ε3 homozygotes, APOE-ε2 carriers had lower global Aβ burden (βstd [95% confidence interval (CI)]:-0.31[-0.45,-0.16], p=0.034), but did not differ on regional tau burden (Figure-1) or tau accumulation over time (Figure-2). APOE-ε4 participants showed higher Aβ (βstd [95%CI]: 0.64[0.42,0.82], p<0.001) and tau burden (βstd range: 0.27-0.51, all p<0.006). In mediation analyses, APOE-ε4 only retained an Aβ-independent effect on tau in the ERC. APOE-ε4showed a trend towards increased tau accumulation over time in Braak-V/VI compared to APOE-ε3 homozygotes (βstd [95%CI]: 0.10[-0.02,0.18], p=0.11), and this association was fully mediated by baseline Aβ (Figure-3). CONCLUSION: Our data suggest that the established protective effect of the APOE-ε2 allele against developing clinical AD is primarily linked to resistance against Aβ deposition rather than tau pathology.
  •  
24.
  • Ossenkoppele, Rik, et al. (författare)
  • Research Criteria for the Behavioral Variant of Alzheimer Disease : A Systematic Review and Meta-analysis
  • 2022
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149. ; 79:1, s. 48-60
  • Forskningsöversikt (refereegranskat)abstract
    • Importance: The behavioral variant of Alzheimer disease (bvAD) is characterized by early and predominant behavioral deficits caused by AD pathology. This AD phenotype is insufficiently understood and lacks standardized clinical criteria, limiting reliability and reproducibility of diagnosis and scientific reporting. Objective: To perform a systematic review and meta-analysis of the bvAD literature and use the outcomes to propose research criteria for this syndrome. Data Sources: A systematic literature search in PubMed/MEDLINE and Web of Science databases (from inception through April 7, 2021) was performed in duplicate. Study Selection: Studies reporting on behavioral, neuropsychological, or neuroimaging features in bvAD and, when available, providing comparisons with typical amnestic-predominant AD (tAD) or behavioral variant frontotemporal dementia (bvFTD). Data Extraction and Synthesis: This analysis involved random-effects meta-analyses on group-level study results of clinical data and systematic review of the neuroimaging literature. The study was performed following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Main Outcomes and Measures: Behavioral symptoms (neuropsychiatric symptoms and bvFTD core clinical criteria), cognitive function (global cognition, episodic memory, and executive functioning), and neuroimaging features (structural magnetic resonance imaging, [18F]fluorodeoxyglucose-positron emission tomography, perfusion single-photon emission computed tomography, amyloid positron emission tomography, and tau positron emission tomography). Results: The search led to the assessment of 83 studies, including 13 suitable for meta-analysis. Data were collected for 591 patients with bvAD. There was moderate to substantial heterogeneity and moderate risk of bias across studies. Cases with bvAD showed more severe behavioral symptoms than tAD (standardized mean difference [SMD], 1.16 [95% CI, 0.74-1.59]; P <.001) and a trend toward less severe behavioral symptoms compared with bvFTD (SMD, -0.22 [95% CI, -0.47 to 0.04]; P =.10). Meta-analyses of cognitive data indicated worse executive performance in bvAD vs tAD (SMD, -1.03 [95% CI, -1.74 to -0.32]; P =.008) but not compared with bvFTD (SMD, -0.61 [95% CI, -1.75 to 0.53]; P =.29). Cases with bvAD showed a nonsignificant difference of worse memory performance compared with bvFTD (SMD, -1.31 [95% CI, -2.75 to 0.14]; P =.08) but did not differ from tAD (SMD, 0.43 [95% CI, -0.46 to 1.33]; P =.34). The neuroimaging literature revealed 2 distinct bvAD neuroimaging phenotypes: an AD-like pattern with relative frontal sparing and a relatively more bvFTD-like pattern characterized by additional anterior involvement, with the AD-like pattern being more prevalent. Conclusions and Relevance: These data indicate that bvAD is clinically most similar to bvFTD, while it shares most pathophysiological features with tAD. Based on these insights, we propose research criteria for bvAD aimed at improving the consistency and reliability of future research and aiding the clinical assessment of this AD phenotype..
  •  
25.
  • Reimand, Juhan, et al. (författare)
  • Why Is Amyloid-β PET Requested After Performing CSF Biomarkers?
  • 2020
  • Ingår i: Journal of Alzheimer's disease : JAD. - 1387-2877. ; 73:2, s. 559-569
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Amyloid-β positron emission tomography (PET) and cerebrospinal fluid (CSF) Aβ42 are considered interchangeable for clinical diagnosis of Alzheimer's disease. OBJECTIVE: To explore the clinical reasoning for requesting additional amyloid-β PET after performing CSF biomarkers. METHODS: We retrospectively identified 72 memory clinic patients who underwent amyloid-β PET after CSF biomarkers analysis for clinical diagnostic evaluation between 2011 and 2019. We performed patient chart reviews to identify factors which led to additional amyloid-β PET. Additionally, we assessed accordance with appropriate-use-criteria (AUC) for amyloid-β PET. RESULTS: Mean patient age was 62.0 (SD = 8.1) and mean Mini-Mental State Exam score was 23.6 (SD = 3.8). CSF analysis conflicting with the clinical diagnosis was the most frequent reason for requesting an amyloid-β PET scan (n = 53, 74%), followed by incongruent MRI (n = 16, 22%), unusual clinical presentation (n = 11, 15%) and young age (n = 8, 11%). An amyloid-β PET scan was rarely (n = 5, 7%) requested in patients with a CSF Aβ+/tau+ status. Fifteen (47%) patients with a post-PET diagnosis of AD had a predominantly non-amnestic presentation. In n = 11 (15%) cases, the reason that the clinician requested amyloid-β was not covered by AUC. This happened most often (n = 7) when previous CSF analysis did not support current clinical diagnosis, which led to requesting amyloid-β PET. CONCLUSION: In this single-center study, the main reason for requesting an amyloid-β PET scan after performing CSF biomarkers was the occurrence of a mismatch between the primary clinical diagnosis and CSF Aβ/tau results.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 37
Typ av publikation
tidskriftsartikel (35)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (37)
Författare/redaktör
Groot, Colin (33)
Ossenkoppele, Rik (32)
Scheltens, Philip (18)
Barkhof, Frederik (16)
van der Flier, Wiesj ... (13)
Hansson, Oskar (11)
visa fler...
Smith, Ruben (7)
Stomrud, Erik (6)
Strandberg, Olof (6)
Teunissen, Charlotte ... (5)
Jagust, William J. (4)
Palmqvist, Sebastian (4)
Mez, Jesse (4)
Leuzy, Antoine (4)
Salomaa, Veikko (3)
Perola, Markus (3)
Lind, Lars (3)
Raitakari, Olli T (3)
Rudan, Igor (3)
Deloukas, Panos (3)
North, Kari E. (3)
Wareham, Nicholas J. (3)
Janelidze, Shorena (3)
Kuusisto, Johanna (3)
Laakso, Markku (3)
McCarthy, Mark I (3)
Linneberg, Allan (3)
Grarup, Niels (3)
Pedersen, Oluf (3)
Hansen, Torben (3)
Langenberg, Claudia (3)
Boehnke, Michael (3)
Mohlke, Karen L (3)
Scott, Robert A (3)
Jögi, Jonas (3)
Molinuevo, José Luis (3)
Mahajan, Anubha (3)
Walker, Mark (3)
Luan, Jian'an (3)
Gustafsson, Stefan (3)
Bouwman, Femke (3)
Frisoni, Giovanni B. (3)
Karpe, Fredrik (3)
Kovacs, Peter (3)
Rivadeneira, Fernand ... (3)
Zhao, Jing Hua (3)
Harris, Tamara B (3)
Liu, Yongmei (3)
Loos, Ruth J F (3)
Uitterlinden, André ... (3)
visa färre...
Lärosäte
Lunds universitet (35)
Umeå universitet (3)
Uppsala universitet (3)
Karolinska Institutet (3)
Göteborgs universitet (2)
Kungliga Tekniska Högskolan (1)
visa fler...
Stockholms universitet (1)
Örebro universitet (1)
Linköpings universitet (1)
visa färre...
Språk
Engelska (37)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (37)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy