SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grum Grzhimailo A. N.) "

Sökning: WFRF:(Grum Grzhimailo A. N.)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gryzlova, E. V., et al. (författare)
  • Influence of an atomic resonance on the coherent control of the photoionization process
  • 2022
  • Ingår i: Physical Review Research. - 2643-1564. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • In coherent control schemes, pathways connecting an initial and a final state can be independently controlled by manipulating the complex amplitudes of their transition matrix elements. For paths characterized by the absorption of multiple photons, these quantities depend on the magnitude and phase between the intermediate steps, and are expected to be strongly affected by the presence of resonances. We investigate the coherent control of the photoemission process in neon using a phase-controlled two-color extreme ultraviolet pulse with frequency in proximity of an excited energy state. Using helium as a reference, we show that the presence of such a resonance in neon modifies the amplitude and phase of the asymmetric emission of photoelectrons. Theoretical simulations based on perturbation theory are in fair agreement with the experimental observations.
  •  
2.
  • Gryzlova, E. V., et al. (författare)
  • Doubly resonant three-photon double ionization of Ar atoms induced by an EUV free-electron laser
  • 2011
  • Ingår i: Physical Review A (Atomic, Molecular and Optical Physics). - 1050-2947. ; 84:6
  • Tidskriftsartikel (refereegranskat)abstract
    • A mechanism for three-photon double ionization of atoms by extreme-ultraviolet free-electron laser pulses is revealed, where in a sequential process the second ionization step, proceeding via resonant two-photon ionization of ions, is strongly enhanced by the excitation of ionic autoionizing states. In contrast to the conventional model, the mechanism explains the observed relative intensities of photoelectron peaks and their angular dependence in three-photon double ionization of argon.
  •  
3.
  • Maroju, P. K., et al. (författare)
  • Analysis of two-color photoelectron spectroscopy for attosecond metrology at seeded free-electron lasers
  • 2021
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 23:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The generation of attosecond pulse trains at free-electron lasers opens new opportunities in ultrafast science, as it gives access, for the first time, to reproducible, programmable, extreme ultraviolet (XUV) waveforms with high intensity. In this work, we present a detailed analysis of the theoretical model underlying the temporal characterization of the attosecond pulse trains recently generated at the free-electron laser FERMI. In particular, the validity of the approximations used for the correlated analysis of the photoelectron spectra generated in the two-color photoionization experiments are thoroughly discussed. The ranges of validity of the assumptions, in connection with the main experimental parameters, are derived.
  •  
4.
  • Mazza, T., et al. (författare)
  • Mapping Resonance Structures in Transient Core-Ionized Atoms
  • 2020
  • Ingår i: Physical Review X. - 2160-3308. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The nature of transient electronic states created by photoabsorption critically determines the dynamics of the subsequently evolving system. Here, we investigate K-shell photoionized atomic neon by absorbing a second photon within the Auger-decay lifetime of 2.4 fs using the European XFEL, a unique high-repetition-rate, wavelength-tunable x-ray free-electron laser. By high-resolution electron spectroscopy, we map out the transient Rydberg resonances unraveling the details of the subsequent decay of the hollow atom. So far, ultra-short-lived electronic transients, which are often inaccessible by experiments, were mainly inferred from theory but are now addressed by nonlinear x-ray absorption. The successful characterization of these resonances with femtosecond lifetimes provides the basis for a novel class of site-specific, nonlinear, and time-resolved studies with strong impact for a wide range of topics in physics and chemistry.
  •  
5.
  • Rouzee, A., et al. (författare)
  • Angle-resolved photoelectron spectroscopy of sequential three-photon triple ionization of neon at 90.5 eV photon energy
  • 2011
  • Ingår i: Physical Review A (Atomic, Molecular and Optical Physics). - 1050-2947. ; 83:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple photoionization of neon atoms by a strong 13.7 nm (90.5 eV) laser pulse has been studied at the FLASH free electron laser in Hamburg. A velocity map imaging spectrometer was used to record angle-resolved photoelectron spectra on a single-shot basis. Analysis of the evolution of the spectra with the FEL pulse energy in combination with extensive theoretical calculations allows the ionization pathways that contribute to be assigned, revealing the occurrence of sequential three-photon triple ionization.
  •  
6.
  • Fink, R. F., et al. (författare)
  • Angular distribution of Auger electrons from fixed-in-space and rotating C 1s -> 2 pi photoexcited CO : Theory
  • 2009
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 130:1, s. 014306-
  • Tidskriftsartikel (refereegranskat)abstract
    • The one-center approach for molecular Auger decay is applied to predict the angular distribution of Auger electrons from rotating and fixed-in-space molecules. For that purpose, phase shifts between the Auger decay amplitudes have been incorporated in the atomic model. The approach is applied to the resonant Auger decay of the photoexcited C 1s -> 2 pi resonance in carbon monoxide. It is discussed how the symmetry of the final ionic state is related to features in the angular distributions and a parametrization for the molecular frame Auger electron angular distribution is suggested. The angular distribution of Auger electrons after partial orientation of the molecule by the sigma ->pi-excitation process is also calculated and compared to available experimental and theoretical data. The results of the one-center approach are at least of the same quality as the available theoretical data even though the latter stem from a much more sophisticated method. As the one-center approximation can be applied with low computational demand even to extended systems, the present approach opens a way to describe the angular distribution of Auger electrons in a wide variety of applications.
  •  
7.
  • Ilchen, M., et al. (författare)
  • X-ray spectroscopy on ultrafast-decaying core-excited atomic ions
  • 2020
  • Ingår i: Charge-exchange. - : IOP Publishing. - 1742-6588. ; 1412
  • Konferensbidrag (refereegranskat)abstract
    • Results from the first soft X-ray user experiment at the European XFEL on nonlinear photon-matter interaction will be presented. Angle-resolved electron time-of-flight spectroscopy employed at the AQS (Atomic- like Quantum Systems) endstation of the SQS (Small Quantum Systems) instrument reveals insight into the character of resonances in highly transient, core ionized neon ions, i.e. Ne:+ 1s12s22p6 → Ne+&∗ 1s02s22p6np, together with their respective relaxation dynamics. Enabled by the unique properties of the European XFEL, novel perspectives on efficient nonlinear spectroscopy will be discussed.
  •  
8.
  • Kiselev, M. D., et al. (författare)
  • An experimental and theoretical study of the Kr 3d correlation satellites
  • 2022
  • Ingår i: Journal of Physics B: Atomic, Molecular and Optical Physics. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 55:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Kr 3d correlation satellites have been studied experimentally by using plane polarized synchrotron radiation to record polarization dependent photoelectron spectra (PES), and theoretically by employing the R-matrix method to calculate photoionization cross sections, PES and angular distributions. The experimental spectra have allowed the photoelectron anisotropy parameters characterizing the angular distributions, and the intensity branching ratios, related to the photoionization partial cross sections, to be evaluated. The results are discussed in terms of normal and conjugate shake-up processes. The experimental and calculated photoelectron angular distributions associated with those correlation satellites that arise predominantly through conjugate shake-up mechanisms are shown to be isotropic. In contrast, the anisotropy parameters associated with satellites due to normal shake-up processes exhibit a dependence on electron kinetic energy similar to that of the anisotropy parameters corresponding to the Kr 3d main lines. The theoretical results include an analysis of the partial waves representing the emitted photoelectron and, for certain correlation satellites, show that a particular ionization continuum dominates. This, in turn, may allow the dominant normal or conjugate shake-up mechanism forming the satellite to be identified.
  •  
9.
  • Kumar Maroju, Praveen, et al. (författare)
  • Attosecond pulse shaping using a seeded free-electron laser
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 578, s. 386-391
  • Tidskriftsartikel (refereegranskat)abstract
    • Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales. The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation. Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters, multilayer mirrors and manipulation of the driving field. However, none of these approaches allows the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free-electron lasers, by contrast, deliver femtosecond, extreme-ultraviolet and X-ray pulses with energies ranging from tens of microjoules to a few millijoules. Recent experiments have shown that they can generate subfemtosecond spikes, but with temporal characteristics that change shot-to-shot. Here we report reproducible generation of high-energy (microjoule level) attosecond waveforms using a seeded free-electron laser. We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with an approach for its temporal reconstruction. The results presented here open the way to performing attosecond time-resolved experiments with free-electron lasers.
  •  
10.
  • Maroju, Praveen K., et al. (författare)
  • A Novel Attosecond Timing Tool for Free-Electron Laser Experiment
  • 2020
  • Ingår i: High Intensity Lasers and High Field Phenomena 2020. - 9781943580736
  • Konferensbidrag (refereegranskat)abstract
    • We demonstrate a novel timing tool for Free-Electron Lasers to determine the delay between an attosecond pulse train and infrared pulse with sub-optical-cycle resolu-. tion.
  •  
11.
  • Augustin, S., et al. (författare)
  • Signatures of autoionization in the angular electron distribution in two-photon double ionization of Ar
  • 2018
  • Ingår i: Physical Review A. - 2469-9926. ; 98:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A kinematically complete experiment on two-photon double ionization of Ar by free-electron laser radiation with a photon energy of 27.93 eV was performed. The electron energy spectra show that double ionization is dominated by the sequential process. Comparison of the electron angular distributions to our data for single ionization and to theory confirms that even in the sequential process the electrons from both ionization steps are correlated with each other through polarization of the intermediate Ar+ state. Furthermore, a very important role of autoionization in both ionization steps is found.
  •  
12.
  • Maroju, Praveen Kumar, et al. (författare)
  • Complex attosecond waveform synthesis at fel fermi
  • 2021
  • Ingår i: Applied Sciences (Switzerland). - : MDPI AG. - 2076-3417. ; 11:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-electron lasers (FELs) can produce radiation in the short wavelength range extending from the extreme ultraviolet (XUV) to the X-rays with a few to a few tens of femtoseconds pulse duration. These facilities have enabled significant breakthroughs in the field of atomic, molecular, and optical physics, implementing different schemes based on two-color photoionization mechanisms. In this article, we present the generation of attosecond pulse trains (APTs) at the seeded FEL FERMI using the beating of multiple phase-locked harmonics. We demonstrate the complex attosecond waveform shaping of the generated APTs, exploiting the ability to manipulate independently the amplitudes and the phases of the harmonics. The described generalized attosecond waveform synthesis technique with an arbitrary number of phase-locked harmonics will allow the generation of sub-100 as pulses with programmable electric fields.
  •  
13.
  • Ueda, Kiyoshi, et al. (författare)
  • Roadmap on photonic, electronic and atomic collision physics : I. Light-matter interaction
  • 2019
  • Ingår i: Journal of Physics B. - : IOP PUBLISHING LTD. - 0953-4075 .- 1361-6455. ; 52:17
  • Tidskriftsartikel (refereegranskat)abstract
    • We publish three Roadmaps on photonic, electronic and atomic collision physics in order to celebrate the 60th anniversary of the ICPEAC conference. In Roadmap I, we focus on the light-matter interaction. In this area, studies of ultrafast electronic and molecular dynamics have been rapidly growing, with the advent of new light sources such as attosecond lasers and x-ray free electron lasers. In parallel, experiments with established synchrotron radiation sources and femtosecond lasers using cutting-edge detection schemes are revealing new scientific insights that have never been exploited. Relevant theories are also being rapidly developed. Target samples for photon-impact experiments are expanding from atoms and small molecules to complex systems such as biomolecules, fullerene, clusters and solids. This Roadmap aims to look back along the road, explaining the development of these fields, and look forward, collecting contributions from twenty leading groups from the field.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy