SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guckenberger Matthias) "

Sökning: WFRF:(Guckenberger Matthias)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdollahi, Sara, et al. (författare)
  • Dynamic anthropomorphic thorax phantom for quality assurance of motion management in radiotherapy
  • 2024
  • Ingår i: Physics and imaging in radiation oncology. - 2405-6316. ; 30
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purpose: Motion management techniques are important to spare the healthy tissue adequately. However, they are complex and need dedicated quality assurance. The aim of this study was to create a dynamic phantom designed for quality assurance and to replicate a patient's size, anatomy, and tissue density. Materials and methods: A computed tomography (CT) scan of a cancer patient was used to create molds for the lungs, heart, ribs, and vertebral column via additive manufacturing. A pump system and software were developed to simulate respiratory dynamics. The extent of respiratory motion was quantified using a 4DCT scan. End-to-end tests were conducted to evaluate two motion management techniques for lung stereotactic body radiotherapy (SBRT). Results: The chest wall moved between 4 mm and 13 mm anteriorly and 2 mm to 7 mm laterally during the breathing. The diaphragm exhibited superior-inferior movement ranging from 5 mm to 16 mm in the left lung and 10 mm to 36 mm in the right lung. The left lung tumor displaced ± 7 mm superior-inferiorly and anterior-posteriorly. The CT numbers were for lung: −716 ± 108 HU (phantom) and −713 ± 70 HU (patient); bone: 460 ± 20 HU (phantom) and 458 ± 206 HU (patient); soft tissue: 92 ± 9 HU (phantom) and 60 ± 25 HU (patient). The end-to-end testing showed an excellent agreement between the measured and the calculated dose for ion chamber and film dosimetry. Conclusions: The phantom is recommended for quality assurance, evaluating the institution's specific planning and motion management strategies either through end-to-end testing or as an external audit phantom.
  •  
2.
  • Colvill, Emma, et al. (författare)
  • A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy : A multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking
  • 2016
  • Ingår i: Radiotherapy and Oncology. - : Elsevier BV. - 0167-8140. ; 119:1, s. 159-165
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose A study of real-time adaptive radiotherapy systems was performed to test the hypothesis that, across delivery systems and institutions, the dosimetric accuracy is improved with adaptive treatments over non-adaptive radiotherapy in the presence of patient-measured tumor motion. Methods and materials Ten institutions with robotic(2), gimbaled(2), MLC(4) or couch tracking(2) used common materials including CT and structure sets, motion traces and planning protocols to create a lung and a prostate plan. For each motion trace, the plan was delivered twice to a moving dosimeter; with and without real-time adaptation. Each measurement was compared to a static measurement and the percentage of failed points for γ-tests recorded. Results For all lung traces all measurement sets show improved dose accuracy with a mean 2%/2 mm γ-fail rate of 1.6% with adaptation and 15.2% without adaptation (p < 0.001). For all prostate the mean 2%/2 mm γ-fail rate was 1.4% with adaptation and 17.3% without adaptation (p < 0.001). The difference between the four systems was small with an average 2%/2 mm γ-fail rate of <3% for all systems with adaptation for lung and prostate. Conclusions The investigated systems all accounted for realistic tumor motion accurately and performed to a similar high standard, with real-time adaptation significantly outperforming non-adaptive delivery methods.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy