SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guenther Albrecht) "

Sökning: WFRF:(Guenther Albrecht)

  • Resultat 1-25 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barragán, O., et al. (författare)
  • K2-141 b: A 5-M⊕ super-Earth transiting a K7 V star every 6.7 hours
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the discovery of K2-141 b (EPIC 246393474 b), an ultra-short-period super-Earth on a 6.7 h orbit transiting an active K7 V star based on data from K2 campaign 12. We confirmed the planet's existence and measured its mass with a series of follow-up observations: seeing-limited Muscat imaging, NESSI high-resolution speckle observations, and FIES and HARPS high-precision radial-velocity monitoring. K2-141 b has a mass of 5.31 ± 0.46 M ⊗ and radius of 1.54 -0.09 +0.10 R ⊗ , yielding a mean density of 8.00 -1.45 +1.83 g cm -3 and suggesting a rocky-iron composition. Models indicate that iron cannot exceed ∼70% of the total mass. With an orbital period of only 6.7 h, K2-141 b is the shortest-period planet known to date with a precisely determined mass.
  •  
2.
  • Barragán, O., et al. (författare)
  • Radial velocity confirmation of K2-100b: A young, highly irradiated, and low-density transiting hot Neptune
  • 2019
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 490:1, s. 698-708
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed analysis of HARPS-N radial velocity observations of K2-100, a young and active star in the Praesepe cluster, which hosts a transiting planet with a period of 1.7 d. We model the activity-induced radial velocity variations of the host star with a multidimensional Gaussian Process framework and detect a planetary signal of 10.6 ± 3.0 m s−1, which matches the transit ephemeris, and translates to a planet mass of 21.8 ± 6.2 M. We perform a suite of validation tests to confirm that our detected signal is genuine. This is the first mass measurement for a transiting planet in a young open cluster. The relatively low density of the planet, 2.04+−006661 g cm−3, implies that K2-100b retains a significant volatile envelope. We estimate that the planet is losing its atmosphere at a rate of 1011–1012 g s−1 due to the high level of radiation it receives from its host star.
  •  
3.
  • Carleo, Ilaria, et al. (författare)
  • The Multiplanet System TOI-421*
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 160:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations-comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echelle Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution echelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements-and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P-b = 5.19672 +/- 0.00049 days, a mass of M-b = 7.17 +/- 0.66 M-circle plus, and a radius of R-b = R-circle plus, whereas the outer warm Neptune, TOI-421 c, has a period of P-c = 16.06819 +/- 0.00035 days, a mass of M-c = 16.42(-1.04)(+1.06)M(circle plus), a radius of R-c = 5.09(-0.15)(+0.16)R(circle plus), and a density of rho(c) = 0.685(-0.072)(+0.080) cm(-3). With its characteristics, the outer planet (rho(c) = 0.685(-0.0072)(+0.080) cm(-3)) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Ly alpha transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed.
  •  
4.
  • Dai, F., et al. (författare)
  • The Discovery and Mass Measurement of a New Ultra-short-period Planet: K2-131
  • 2017
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 154:6, s. 226-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a new ultra-short-period planet and summarize the properties of all such planets for which the mass and radius have been measured. The new planet, EPIC 228732031b, was discovered in K2 Campaign 10. It has a radius of 1.81-0.12+0.16 R_Earth and orbits a G dwarf with a period of 8.9 hr. Radial velocities obtained with Magellan/PFS and TNG/HARPS-N show evidence for stellar activity along with orbital motion. We determined the planetary mass using two different methods: (1) the “floating chunk offset” method, based only on changes in velocity observed on the same night; and (2) a Gaussian process regression based on both the radial velocity and photometric time series. The results are consistent and lead to a mass measurement of 6.5+/- 1.6 M_Earth and a mean density of 6.0-2.7+3.0 g cm‑3.
  •  
5.
  • Fridlund, Malcolm, 1952, et al. (författare)
  • The TOI-763 system: Sub-Neptunes orbiting a Sun-like star
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 498:3, s. 4503-4517
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a planetary system orbiting TOI-763(aka CD-39 7945), a V = 10.2, high proper motion G-type dwarf star that was photometrically monitored by the TESS space mission in Sector 10. We obtain and model the stellar spectrum and find an object slightly smaller than the Sun, and somewhat older, but with a similar metallicity. Two planet candidates were found in the light curve to be transiting the star. Combining TESS transit photometry with HARPS high-precision radial velocity (RV) follow-up measurements confirm the planetary nature of these transit signals. We determine masses, radii, and bulk densities of these two planets. A third planet candidate was discovered serendipitously in the RV data. The inner transiting planet, TOI-763 b, has an orbital period of Pb = 5.6 d, a mass of Mb = 9.8 ± 0.8 M⊕, and a radius of Rb = 2.37 ± 0.10 R⊕. The second transiting planet, TOI-763 c, has an orbital period of Pc = 12.3 d, a mass of Mc = 9.3 ± 1.0 M⊕, and a radius of Rc = 2.87 ± 0.11 R⊕. We find the outermost planet candidate to orbit the star with a period of ∼48 d. If confirmed as a planet, it would have a minimum mass of Md = 9.5 ± 1.6 M⊕. We investigated the TESS light curve in order to search for a mono transit by planet d without success. We discuss the importance and implications of this planetary system in terms of the geometrical arrangements of planets orbiting G-type stars.
  •  
6.
  • Gandolfi, D., et al. (författare)
  • TESS's first planet: A super-Earth transiting the naked-eye star π Mensae
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 619
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the confirmation and mass determination of π Men c, the first transiting planet discovered by NASA's TESS space mission. π Men is a naked-eye (V = 5.65 mag), quiet G0 V star that was previously known to host a sub-stellar companion (π Men b) on a longperiod (Porb = 2091 days), eccentric (e = 0.64) orbit. Using TESS time-series photometry, combined with Gaia data, published UCLES at AAT Doppler measurements, and archival HARPS at ESO-3.6m radial velocities, we found that π Men c is a close-in planet with an orbital period of Porb = 6.27 days, a mass of Mc = 4.52 ± 0.81 Mo, and a radius of Rc = 2.06 ± 0.03 Ro. Based on the planet's orbital period and size, π Men c is a super-Earth located at, or close to, the radius gap, while its mass and bulk density suggest it may have held on to a significant atmosphere. Because of the brightness of the host star, this system is highly suitable for a wide range of further studies to characterize the planetary atmosphere and dynamical properties. We also performed an asteroseismic analysis of the TESS data and detected a hint of power excess consistent with the seismic values expected for this star, although this result depends on the photometric aperture used to extract the light curve. This marginal detection is expected from pre-launch simulations hinting at the asteroseismic potential of the TESS mission for longer, multi-sector observations and/or for more evolved bright stars.
  •  
7.
  • Gandolfi, Davide, et al. (författare)
  • The Transiting Multi-planet System HD 3167: A 5.7 M ⊕ Super-Earth and an 8.3 M ⊕ Mini-Neptune
  • 2017
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 154:3, s. 123-
  • Tidskriftsartikel (refereegranskat)abstract
    • HD 3167 is a bright (V = 8.9 mag) K0 V star observed by NASA’s K2 space mission during its Campaign 8. It has recently been found to host two small transiting planets, namely, HD 3167b, an ultra-short-period (0.96 days) super-Earth, and HD 3167c, a mini-Neptune on a relatively long-period orbit (29.85 days). Here we present an intensive radial velocity (RV) follow-up of HD 3167 performed with the FIES@NOT, HARPS@ESO-3.6 m, and HARPS-N@TNG spectrographs. We revise the system parameters and determine radii, masses, and densities of the two transiting planets by combining the K2 photometry with our spectroscopic data. With a mass of 5.69 ± 0.44 M⊕, a radius of 1.574 ± 0.054 R⊕, and a mean density of {8.00}-0.98+1.10 g cm^-3, HD 3167b joins the small group of ultra-short-period planets known to have rocky terrestrial compositions. HD 3167c has a mass of 8.33-1.85+1.79 M⊕ and a radius of 2.74}-0.100+0.106 R⊕, yielding a mean density of 2.21-0.53+0.56 g cm^-3, indicative of a planet with a composition comprising a solid core surrounded by a thick atmospheric envelope. The rather large pressure scale height (∼350 km) and the brightness of the host star make HD 3167c an ideal target for atmospheric characterization via transmission spectroscopy across a broad range of wavelengths. We found evidence of additional signals in the RV measurements but the currently available data set does not allow us to draw any firm conclusions on the origin of the observed variation.
  •  
8.
  • Gandolfi, D., et al. (författare)
  • The Transiting Multi-planet System HD15337: Two Nearly Equal-mass Planets Straddling the Radius Gap
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 876:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a super-Earth and a sub-Neptune transiting the star HD 15337 (TOI-402, TIC 120896927), a bright (V = 9) K1 dwarf observed by the Transiting Exoplanet Survey Satellite (TESS) in Sectors 3 and 4. We combine the TESS photometry with archival High Accuracy Radial velocity Planet Searcher spectra to confirm the planetary nature of the transit signals and derive the masses of the two transiting planets. With an orbital period of 4.8 days, a mass of {7.51}-1.01+1.09 {M}\oplus and a radius of 1.64 ± 0.06 R ⊕, HD 15337 b joins the growing group of short-period super-Earths known to have a rocky terrestrial composition. The sub-Neptune HD 15337 c has an orbital period of 17.2 days, a mass of {8.11}-1.69+1.82 {{{M}}}\oplus , and a radius of 2.39 ± 0.12 R ⊕, suggesting that the planet might be surrounded by a thick atmospheric envelope. The two planets have similar masses and lie on opposite sides of the radius gap, and are thus an excellent testbed for planet formation and evolution theories. Assuming that HD 15337 c hosts a hydrogen-dominated envelope, we employ a recently developed planet atmospheric evolution algorithm in a Bayesian framework to estimate the history of the high-energy (extreme ultraviolet and X-ray) emission of the host star. We find that at an age of 150 Myr, the star possessed on average between 3.7 and 127 times the high-energy luminosity of the current Sun.
  •  
9.
  • Georgieva, Iskra, 1987, et al. (författare)
  • Hot planets around cool stars - two short-period mini-Neptunes transiting the late K-dwarf TOI-1260
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 505:4, s. 4684-4701
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and characterization of two sub-Neptunes in close orbits, as well as a tentative outer planet of a similar size, orbiting TOI-1260 - a low metallicity K6V dwarf star. Photometry from Transiting Exoplanet Survey Satellite(TESS) yields radii of R-b = 2.33 +/- 0.10 and R-c = 2.82 +/- 0.15 R-circle plus, and periods of 3.13 and 7.49 d for TOI-1260b and TOI-1260c, respectively. We combined the TESS data with a series of ground-based follow-up observations to characterize the planetary system. From HARPS-N high-precision radial velocities we obtain M-b = and M-c = M-circle plus. The star is moderately active with a complex activity pattern, which necessitated the use of Gaussian process regression for both the light-curve detrending and the radial velocity modelling, in the latter case guided by suitable activity indicators. We successfully disentangle the stellar-induced signal from the planetary signals, underlining the importance and usefulness of the Gaussian process approach. We test the system's stability against atmospheric photoevaporation and find that the TOI-1260 planets are classic examples of the structure and composition ambiguity typical for the 2-3 R-circle plus range.
  •  
10.
  • Goffo, Elisa, et al. (författare)
  • Company for the Ultra-high Density, Ultra-short Period Sub-Earth GJ 367 b: Discovery of Two Additional Low-mass Planets at 11.5 and 34 Days
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8213 .- 2041-8205. ; 955:1
  • Tidskriftsartikel (refereegranskat)abstract
    • GJ 367 is a bright (V ≈ 10.2) M1 V star that has been recently found to host a transiting ultra-short period sub-Earth on a 7.7 hr orbit. With the aim of improving the planetary mass and radius and unveiling the inner architecture of the system, we performed an intensive radial velocity follow-up campaign with the HARPS spectrograph—collecting 371 high-precision measurements over a baseline of nearly 3 yr—and combined our Doppler measurements with new TESS observations from sectors 35 and 36. We found that GJ 367 b has a mass of M b = 0.633 ± 0.050 M ⊕ and a radius of R b = 0.699 ± 0.024 R ⊕, corresponding to precisions of 8% and 3.4%, respectively. This implies a planetary bulk density of ρ b = 10.2 ± 1.3 g cm−3, i.e., 85% higher than Earth’s density. We revealed the presence of two additional non-transiting low-mass companions with orbital periods of ∼11.5 and 34 days and minimum masses of M c sin i c = 4.13 ± 0.36 M ⊕ and M d sin i d = 6.03 ± 0.49 M ⊕, respectively, which lie close to the 3:1 mean motion commensurability. GJ 367 b joins the small class of high-density planets, namely the class of super-Mercuries, being the densest ultra-short period small planet known to date. Thanks to our precise mass and radius estimates, we explored the potential internal composition and structure of GJ 367 b, and found that it is expected to have an iron core with a mass fraction of 0.91 − 0.23 + 0.07 . How this iron core is formed and how such a high density is reached is still not clear, and we discuss the possible pathways of formation of such a small ultra-dense planet.
  •  
11.
  • Grziwa, S., et al. (författare)
  • K2-31B, a Grazing Transiting Hot Jupiter on a 1.26-Day Orbit Around a Bright G7v Star
  • 2016
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 152:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of K2-31b, the first confirmed transiting hot Jupiter detected by the K2 space mission. We combined K2 photometry with FastCam lucky imaging and FIES and HARPS high-resolution spectroscopy to confirm the planetary nature of the transiting object and derived the system parameters. K2-31b is a 1.8-Jupiter-mass planet on a. 1.26-day orbit around a G7 V star (M-star = 0.91 M-circle dot, R-star = 0.78 R-circle dot). The planetary radius is poorly constrained (0.7
  •  
12.
  • Guenther, E. W., et al. (författare)
  • K2-106, a system containing a metal-rich planet and a planet of lower density
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 608, s. 93-
  • Tidskriftsartikel (refereegranskat)abstract
    • Planets in the mass range from 2 to 15 M_Earth are very diverse. Some of them have low densities, while others are very dense. By measuring the masses and radii, the mean densities, structure, and composition of the planets are constrained. These parameters also give us important information about their formation and evolution, and about possible processes for atmospheric loss.We determined the masses, radii, and mean densities for the two transiting planets orbiting K2-106. The inner planet has an ultra-short period of 0.57 days. The period of the outer planet is 13.3 days. Although the two planets have similar masses, their densities are very different. For K2-106b we derive Mb=8.36-0.94+0.96 M_Earh, Rb=1.52+/-0.16 R_Earth, and a high density of 13.1-3.6+5.4 g/cm^3. For K2-106c, we find Mc=5.8-3.0+3.3 M_Earth, Rc=2.50-0.26+0.27 R_Earth and a relatively low density of 2.0-1.1+1.6 g/cm^3.Since the system contains two planets of almost the same mass, but different distances from the host star, it is an excellent laboratory to study atmospheric escape. In agreement with the theory of atmospheric-loss processes, it is likely that the outer planet has a hydrogen-dominated atmosphere. The mass and radius of the inner planet is in agreement with theoretical models predicting an iron core containing 80+20-30% of its mass. Such a high metal content is surprising, particularly given that the star has an ordinary (solar) metal abundance. We discuss various possible formation scenarios for this unusual planet.
  •  
13.
  • Hatzes, A., et al. (författare)
  • A Radial Velocity Study of the Planetary System of π Mensae: Improved Planet Parameters for pi Mensae c and a Third Planet on a 125 Day Orbit
  • 2022
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 163:5
  • Tidskriftsartikel (refereegranskat)abstract
    • π Men hosts a transiting planet detected by the Transiting Exoplanet Survey Satellite space mission and an outer planet in a 5.7 yr orbit discovered by radial velocity (RV) surveys. We studied this system using new RV measurements taken with the HARPS spectrograph on ESO's 3.6 m telescope, as well as archival data. We constrain the stellar RV semiamplitude due to the transiting planet, π Men c, as K c = 1.21 ± 0.12 m s-1, resulting in a planet mass of M c = 3.63 ± 0.38 M. A planet radius of R c = 2.145 ± 0.015 R yields a bulk density of ρ c = 2.03 ± 0.22 g cm-3. The precisely determined density of this planet and the brightness of the host star make π Men c an excellent laboratory for internal structure and atmospheric characterization studies. Our HARPS RV measurements also reveal compelling evidence for a third body, π Men d, with a minimum mass M d sin i d = 13.38 ± 1.35 M orbiting with a period of P orb,d = 125 days on an eccentric orbit (e d = 0.22). A simple dynamical analysis indicates that the orbit of π Men d is stable on timescales of at least 20 Myr. Given the mutual inclination between the outer gaseous giant and the inner rocky planet and the presence of a third body at 125 days, π Men is an important planetary system for dynamical and formation studies.
  •  
14.
  • Hidalgo, D., et al. (författare)
  • Three planets transiting the evolved star EPIC 249893012: a hot 8.8-Mearth super-Earth and two warm 14.7 and 10.2-Mearth sub-Neptunes
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 636
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a new planetary system with three transiting planets, one super-Earth and two sub-Neptunes, that orbit EPIC 249893012, a G8 IV-V evolved star (M⋆ = 1.05 ± 0.05 M☉, R⋆ = 1.71 ± 0.04 R☉, Teff = 5430 ± 85 K). The star is just leaving the main sequence. We combined K2 photometry with IRCS adaptive-optics imaging and HARPS, HARPS-N, and CARMENES high-precision radial velocity measurements to confirm the planetary system, determine the stellar parameters, and measure radii, masses, and densities of the three planets. With an orbital period of 3.5949-0.0007+0.0007days, a mass of 8.75-1.08+1.09 M⊕, and a radius of 1.95-0.08+0.09 R⊕, the inner planet b is compatible with nickel-iron core and a silicate mantle (ρb = 6.39-1.04+1.19 g cm-3). Planets c and d with orbital periods of 15.624-0.001+0.001 and 35.747-0.005+0.005 days, respectively, have masses and radii of 14.67-1.89+1,84 M⊕ and 3.67-0.14+0.17 R⊕ and 10.18-2.42+2.46 M⊕ and 3.94-0.12+0.13 R⊕, respectively, yielding a mean density of 1.62-0.29+0.30 and 0.91-0.23+0.25 g cm-3, respectively. The radius of planet b lies in the transition region between rocky and gaseous planets, but its density is consistent with a rocky composition. Its semimajor axis and the corresponding photoevaporation levels to which the planet has been exposed might explain its measured density today. In contrast, the densities and semimajor axes of planets c and d suggest a very thick atmosphere. The singularity of this system, which orbits a slightly evolved star that is just leaving the main sequence, makes it a good candidate for a deeper study from a dynamical point of view.
  •  
15.
  • Hirano, Teruyuki, et al. (författare)
  • Exoplanets around Low-mass Stars Unveiled by K2
  • 2018
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 155:3, s. 127-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the detection and follow-up observations of planetary candidates around low-mass stars observed by the K2 mission. Based on light-curve analysis, adaptive-optics imaging, and optical spectroscopy at low and high resolution (including radial velocity measurements), we validate 16 planets around 12 low-mass stars observed during K2 campaigns 5–10. Among the 16 planets, 12 are newly validated, with orbital periods ranging from 0.96 to 33 days. For one of the planets (K2-151b), we present ground-based transit photometry, allowing us to refine the ephemerides. Combining our K2 M-dwarf planets together with the validated or confirmed planets found previously, we investigate the dependence of planet radius R p on stellar insolation and metallicity [Fe/H]. We confirm that for periods P ≲ 2 days, planets with a radius Rp≳ 2 R⊕ are less common than planets with a radius between 1–2 R⊕. We also see a hint of the “radius valley” between 1.5 and 2 R⊕, which has been seen for close-in planets around FGK stars. These features in the radius/period distribution could be attributed to photoevaporation of planetary envelopes by high-energy photons from the host star, as they have for FGK stars. For the M dwarfs, though, the features are not as well defined, and we cannot rule out other explanations such as atmospheric loss from internal planetary heat sources or truncation of the protoplanetary disk. There also appears to be a relation between planet size and metallicity: the few planets larger than about 3 R⊕ are found around the most metal-rich M dwarfs.
  •  
16.
  • Hirano, T., et al. (författare)
  • K2-155: A Bright Metal-poor M Dwarf with Three Transiting Super-Earths
  • 2018
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 155:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the discovery of three transiting super-Earths around K2-155 (EPIC 210897587), a relatively bright early M dwarf (V = 12.81 mag) observed during Campaign 13 of the NASA K2 mission. To characterize the system and validate the planet candidates, we conducted speckle imaging and high-dispersion optical spectroscopy, including radial velocity measurements. Based on the K2 light curve and the spectroscopic characterization of the host star, the planet sizes and orbital periods are 1.55 -0.17 +0.20 R ⊕ and 6.34365 ±0.00028 days for the inner planet; 1.95 -0.22 +0.27 R ⊕ and 13.85402 ±0.00088 days for the middle planet; and 1.64 -0.17 +0.18 R ⊕ and 40.6835 ±0.0031 days for the outer planet. The outer planet (K2-155d) is near the habitable zone, with an insolation 1.67 ±0.38 times that of the Earth. The planet's radius falls within the range between that of smaller rocky planets and larger gas-rich planets. To assess the habitability of this planet, we present a series of three-dimensional global climate simulations, assuming that K2-155d is tidally locked and has an Earth-like composition and atmosphere. We find that the planet can maintain a moderate surface temperature if the insolation proves to be smaller than ∼1.5 times that of the Earth. Doppler mass measurements, transit spectroscopy, and other follow-up observations should be rewarding, as K2-155 is one of the optically brightest M dwarfs known to harbor transiting planets.
  •  
17.
  • Hjorth, M., et al. (författare)
  • K2-290: A warm Jupiter and a mini-Neptune in a triple-star system
  • 2019
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 484:3, s. 3522-3536
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of two transiting planets orbiting K2-290 (EPIC 249624646), a bright (V = 11.11) late F-type star residing in a triple-star system. It was observed during Campaign 15 of the K2 mission, and in order to confirm and characterize the system, follow-up spectroscopy and AO imaging were carried out using the FIES, HARPS, HARPS-N, and IRCS instruments. From AO imaging and Gaia data we identify two M-dwarf companions at a separation of 113 ± 2 and 2467+−177155 au. From radial velocities, K2 photometry, and stellar characterization of the host star, we find the inner planet to be a mini-Neptune with a radius of 3.06 ± 0.16 R and an orbital period of P = 9.2 d. The radius of the mini-Neptune suggests that the planet is located above the radius valley, and with an incident flux of F ∼ 400 F, it lies safely outside the super-Earth desert. The outer warm Jupiter has a mass of 0.774 ± 0.047 MJ and a radius of 1.006 ± 0.050 RJ, and orbits the host star every 48.4 d on an orbit with an eccentricity e < 0.241. Its mild eccentricity and mini-Neptune sibling suggest that the warm Jupiter originates from in situ formation or disc migration.
  •  
18.
  • Johnson, M.C., et al. (författare)
  • K2-260 b: A hot Jupiter transiting an F star, and K2-261 b: A warm Saturn around a bright G star
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 481:1, s. 596-612
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and confirmation of two new transiting giant planets from the Kepler extended mission K2. K2-260 b is a hot Jupiter transiting a V = 12.7 F6V star in K2 Field 13, with a mass and radius of M = 1.39-0.06+0.05M⊙and R = 1.69 ± 0.03 R. The planet has an orbital period of P = 2.627 d, and a mass and radius of MP= 1.42-0.32+0.31MJand RP= 1.552-0.057+0.048RJ. This is the first K2 hot Jupiter with a detected secondary eclipse in the Kepler bandpass, with a depth of 71 ± 15 ppm, which we use to estimate a geometric albedo of Ag~ 0.2. We also detected a candidate stellar companion at 0.6 arcsec from K2-260; we find that it is very likely physically associated with the system, in which case it would be an M5-6V star at a projected separation of ~400 au. K2-261 b is a warm Saturn transiting a bright (V = 10.5) G7IV/V star in K2 Field 14. The host star is a metal rich ([Fe/H] = 0.36 ± 0.06), mildly evolved 1.10-0.02+0.01M⊙star with R = 1.65 ± 0.04 R. Thanks to its location near the main-sequence turn-off, we can measure a relatively precise age of 8.8-0.3+0.4Gyr. The planet has P = 11.633 d, MP= 0.223 ± 0.031 MJ, and RP= 0.850-0.022+0.026RJ, and its orbit is eccentric (e = 0.39 ± 0.15). Its brightness and relatively large transit depth make this one of the best-known warm Saturns for follow-up observations to further characterize the planetary system.
  •  
19.
  • Korth, J., et al. (författare)
  • K2-140b and K2-180b - Characterization of a hot Jupiter and a mini-Neptune from the K2 mission
  • 2019
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 482:2, s. 1807-1823
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the independent discovery and characterization of two K2 planets: K2-180b, a mini-Neptune-sized planet in an 8.9-d orbit transiting a V = 12.6 mag, metal-poor ([Fe/H] = -0.65 ± 0.10) K2V star in K2 campaign 5; K2-140b, a transiting hot Jupiter in a 6.6-d orbit around a V = 12.6 mag G6V ([Fe/H] = + 0.10 ± 0.10) star in K2 campaign 10. Our results are based on K2 time-series photometry combined with high-spatial resolution imaging and high-precision radial velocity measurements. We present the first mass measurement of K2-180b. K2-180b has a mass of Mp = 11.3 ± 1.9 M_Earth and a radius of Rp = 2.2 ± 0.1 R_Earth, yielding a mean density of ρp = 5.6 ± 1.9 g cm-3, suggesting a rocky composition. Given its radius, K2-180b is above the region of the so-called `planetary radius gap'. K2-180b is in addition not only one of the densest mini-Neptune-sized planets, but also one of the few mini-Neptune-sized planets known to transit a metal-poor star. We also constrain the planetary and orbital parameters of K2-140b and show that, given the currently available Doppler measurements, the eccentricity is consistent with zero, contrary to the results of a previous study.
  •  
20.
  • Lam, K. W.F., et al. (författare)
  • GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star
  • 2021
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 374:6572, s. 1271-1275
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrashort-period (USP) exoplanets have orbital periods shorter than 1 day. Precise masses and radii of USP exoplanets could provide constraints on their unknown formation and evolution processes. We report the detection and characterization of the USP planet GJ 367b using high-precision photometry and radial velocity observations. GJ 367b orbits a bright (V-band magnitude of 10.2), nearby, and red (M-type) dwarf star every 7.7 hours. GJ 367b has a radius of 0.718 ± 0.054 Earth-radii and a mass of 0.546 ± 0.078 Earth-masses, making it a sub-Earth planet. The corresponding bulk density is 8.106 ± 2.165 grams per cubic centimeter—close to that of iron. An interior structure model predicts that the planet has an iron core radius fraction of 86 ± 5%, similar to that of Mercury’s interior.
  •  
21.
  • Lam, Kristine W. F., et al. (författare)
  • It Takes Two Planets in Resonance to Tango around K2-146
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 159:3
  • Tidskriftsartikel (refereegranskat)abstract
    • K2-146 is a cool, 0.358M dwarf that was found to host a mini-Neptune with a 2.67 day period. The planet exhibited strong transit timing variations (TTVs) of greater than 30 minutes, indicative of the presence of an additional object in the system. Here we report the discovery of the previously undetected outer planet in the system, K2-146 c, using additional photometric data. K2-146 c was found to have a grazing transit geometry and a 3.97 day period. The outer planet was only significantly detected in the latter K2 campaigns presumably because of precession of its orbital plane. The TTVs of K2-146 b and c were measured using observations spanning a baseline of almost 1200 days. We found strong anti -correlation in the TTVs, suggesting the two planets are gravitationally interacting. Our TTV and transit model analyses revealed that K2-146 b has a radius of 2.25 0.10 Re and a mass of 5.6 0.7 Me, whereas K2-146 c has a radius of 2.591 Re and a mass of 7.1 0.9 Me. The inner and outer planets likely have moderate eccentricities of e = 0.14 0.07 and 0.16 0.07, respectively. Long-term numerical integrations of the two -planet orbital solution show that it can be dynamically stable for at least 2 Myr. We show that the resonance angles of the planet pair are librating, which may be an indication that K2-146 b and c are in a 3:2 mean motion resonance. The orbital architecture of the system points to a possible convergent migration origin.
  •  
22.
  • Livingston, J.H., et al. (författare)
  • 44 Validated Planets from K2 Campaign 10
  • 2018
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 156:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present 44 validated planets from the 10th observing campaign of the NASA K2 mission, as well as high-resolution spectroscopy and speckle imaging follow-up observations. These 44 planets come from an initial set of 72 vetted candidates, which we subjected to a validation process incorporating pixel-level analyses, light curve analyses, observational constraints, and statistical false positive probabilities. Our validated planet sample has median values of Rp = 2.2 R_earth , P_orb = 6.9 days, T_eq = 890 K, and J = 11.2 mag. Of particular interest are four ultra-short period planets (P_orb}≲ 1 day), 16 planets smaller than 2 R_earth, and two planets with large predicted amplitude atmospheric transmission features orbiting infrared-bright stars. We also present 27 planet candidates, most of which are likely to be real and worthy of further observations. Our validated planet sample includes 24 new discoveries and has enhanced the number of currently known super-Earths (R_p ≈ 1–2 R_earth), sub-Neptunes (Rp ≈ 2–4 R_earth, and sub-Saturns (Rp ≈ 4–8 R_earth) orbiting bright stars (J = 8–10 mag) by ∼4%, ∼17%, and ∼11%, respectively.
  •  
23.
  • Livingston, John H., et al. (författare)
  • Three Small Planets Transiting a Hyades Star
  • 2018
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 155:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery of three small planets transiting K2-136 (LP 358 348, EPIC 247589423), a late K dwarf in the Hyades. The planets have orbital periods of 7.9757 ± 0.0011, 17.30681-0.00036+0.00034, and 25.5715-0.0040+0.0038 days, and radii of 1.05 ± 0.16, 3.14 ± 0.36, and 1.55-0.21+0.24 Rearth , respectively. With an age of 600–800 Myr, these planets are some of the smallest and youngest transiting planets known. Due to the relatively bright (J = 9.1) host star, the planets are compelling targets for future characterization via radial velocity mass measurements and transmission spectroscopy. As the first known star with multiple transiting planets in a cluster, the system should be helpful for testing theories of planet formation and migration.
  •  
24.
  • Livingston, J., et al. (författare)
  • K2-264: a transiting multiplanet system in the Praesepe open cluster
  • 2019
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 484:1, s. 8-18
  • Tidskriftsartikel (refereegranskat)abstract
    • Planet host stars with well-constrained ages provide a rare window to the time domain of planet formation and evolution. The NASA K2 mission has enabled the discovery of the vast majority of known planets transiting stars in clusters, providing a valuable sample of planets with known ages and radii. We present the discovery of two planets transiting K2-264, an M2 dwarf in the intermediate age (600-800 Myr) Praesepe open cluster (also known as the Beehive Cluster, M44, or NGC 2632), which was observed by K2 during Campaign 16. The planets have orbital periods of 5.8 and 19.7 d, and radii of 2.2 ± 0.2 and 2.7 ± 0.2R⊕, respectively, and their equilibrium temperatures are 496 ± 10 and 331 ± 7 K, making this a system of two warm sub-Neptunes. When placed in the context of known planets orbiting field stars of similar mass to K2-264, these planets do not appear to have significantly inflated radii, as has previously been noted for some cluster planets. As the second known system of multiple planets transiting a star in a cluster, K2-264 should be valuable for testing theories of photoevaporation in systems of multiple planets. Follow-up observations with current near-infrared (NIR) spectrographs could yield planet mass measurements, which would provide information about the mean densities and compositions of small planets soon after photoevaporation is expected to have finished. Follow-up NIR transit observations using Spitzer or large ground-based telescopes could yield improved radius estimates, further enhancing the characterization of these interesting planets.
  •  
25.
  • Luque, R., et al. (författare)
  • A planetary system with two transiting mini-Neptunes near the radius valley transition around the bright M dwarf TOI-776
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and characterization of two transiting planets around the bright M1 V star LP 961-53 (TOI-776, J = 8.5 mag, M = 0.54 ± 0.03 M⊙) detected during Sector 10 observations of the Transiting Exoplanet Survey Satellite (TESS). Combining the TESS photometry with HARPS radial velocities, as well as ground-based follow-up transit observations from the MEarth and LCOGT telescopes, for the inner planet, TOI-776 b, we measured a period of Pb = 8.25 d, a radius of Rb = 1.85 ± 0.13 R⊙, and a mass of Mb = 4.0 ± 0.9 M⊙; and for the outer planet, TOI-776 c, a period of Pc = 15.66 d, a radius of Rc = 2.02 ± 0.14 R⊙, and a mass of Mc = 5.3 ± 1.8 M⊙. The Doppler data shows one additional signal, with a period of ~34 d, associated with the rotational period of the star. The analysis of fifteen years of ground-based photometric monitoring data and the inspection of different spectral line indicators confirm this assumption. The bulk densities of TOI-776 b and c allow for a wide range of possible interior and atmospheric compositions. However, both planets have retained a significant atmosphere, with slightly different envelope mass fractions. Thanks to their location near the radius gap for M dwarfs, we can start to explore the mechanism(s) responsible for the radius valley emergence around low-mass stars as compared to solar-like stars. While a larger sample of well-characterized planets in this parameter space is still needed to draw firm conclusions, we tentatively estimate that the stellar mass below which thermally-driven mass loss is no longer the main formation pathway for sculpting the radius valley is between 0.63 and 0.54 M⊙. Due to the brightness of the star, the TOI-776 system is also an excellent target for the James Webb Space Telescope, providing a remarkable laboratory in which to break the degeneracy in planetary interior models and to test formation and evolution theories of small planets around low-mass stars.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 44

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy