SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Habert Guillaume) "

Sökning: WFRF:(Habert Guillaume)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Devos, David, et al. (författare)
  • Trial of Deferiprone in Parkinson’s Disease
  • 2022
  • Ingår i: New England Journal of Medicine. - : Massachusetts Medical Society. - 0028-4793 .- 1533-4406. ; 387:22, s. 2045-2055
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUNDIron content is increased in the substantia nigra of persons with Parkinson's disease and may contribute to the pathophysiology of the disorder. Early research suggests that the iron chelator deferiprone can reduce nigrostriatal iron content in persons with Parkinson's disease, but its effects on disease progression are unclear.METHODSWe conducted a multicenter, phase 2, randomized, double-blind trial involving participants with newly diagnosed Parkinson's disease who had never received levodopa. Participants were assigned (in a 1:1 ratio) to receive oral deferiprone at a dose of 15 mg per kilogram of body weight twice daily or matched placebo for 36 weeks. Dopaminergic therapy was withheld unless deemed necessary for symptom control. The primary outcome was the change in the total score on the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS; range, 0 to 260, with higher scores indicating more severe impairment) at 36 weeks. Secondary and exploratory clinical outcomes at up to 40 weeks included measures of motor and nonmotor disability. Brain iron content measured with the use of magnetic resonance imaging was also an exploratory outcome.RESULTSA total of 372 participants were enrolled; 186 were assigned to receive deferiprone and 186 to receive placebo. Progression of symptoms led to the initiation of dopaminergic therapy in 22.0% of the participants in the deferiprone group and 2.7% of those in the placebo group. The mean MDS-UPDRS total score at baseline was 34.3 in the deferiprone group and 33.2 in the placebo group and increased (worsened) by 15.6 points and 6.3 points, respectively (difference, 9.3 points; 95% confidence interval, 6.3 to 12.2; P<0.001). Nigrostriatal iron content decreased more in the deferiprone group than in the placebo group. The main serious adverse events with deferiprone were agranulocytosis in 2 participants and neutropenia in 3 participants.CONCLUSIONSIn participants with early Parkinson's disease who had never received levodopa and in whom treatment with dopaminergic medications was not planned, deferiprone was associated with worse scores in measures of parkinsonism than those with placebo over a period of 36 weeks.
  •  
2.
  • Feng, Haibo, et al. (författare)
  • Where to focus? Developing a LCA impact category selection tool for manufacturers of building materials
  • 2023
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526. ; 405
  • Tidskriftsartikel (refereegranskat)abstract
    • Life cycle assessment (LCA) has been widely applied to improve the environmental performance of the building sector. However, due to the complexity of LCA results including the multitude of impact categories, decision makers of the building materials manufacturing industry are grappling with allocating their limited resources to the most influential impact categories. The aim of this article, therefore, is to propose an impact category selection tool that enables performance improvement of building materials without sacrificing the validity of LCA results. The developed method selects common building materials, and defines foreground processes that can be influenced by manufacturers of building materials and background processes that can hardly be impacted using the US Input-Output database. Following the life cycle impact assessment (LCIA) analysis with the ReCiPe2016 Midpoint method, our results indicate that, among the 18 impact categories of the ReCiPe2016 Midpoint method, Global Warming Potential, Ozone Formation and Human Health, Fine Particulate Matter Formation, Ozone Formation and Terrestrial Ecosystems, Terrestrial Acidification, and Terrestrial Ecotoxicity should be considered the first priority group while Ionizing Radiation, Freshwater Eutrophication, Marine Eutrophication, Freshwater Ecotoxicity, Water Consumption should be placed in the last priority group. It further suggests that by shifting the limited available resources to the first priority group, decision makers can readily improve the environmental performance of building materials during the manufacturing process. The contribution of the proposed selection tool lies in that it can be adapted by decision makers to different geographical contexts, LCIA methods, and building materials to efficiently ameliorate the environmental performance of the building sector.
  •  
3.
  • Galimshina, Alina, 1993, et al. (författare)
  • Bio-based materials as a robust solution for building renovation: A case study
  • 2022
  • Ingår i: Applied Energy. - : Elsevier BV. - 1872-9118 .- 0306-2619. ; 316
  • Tidskriftsartikel (refereegranskat)abstract
    • Boosting building renovation is urgently needed to achieve carbon neutrality by 2050. Building retrofit can be achieved by energy-efficient measures such as thermal insulation or replacement of a fossil heating system. Currently, conventional materials that are mostly used for envelope insulation raising the risk of a lock-in situation where measures to mitigate climate change are actually contributing to it. Bio-based materials are a promising alternative as they can be used to not only reduce the energy consumption of a building but also temporarily store carbon. To evaluate the potential benefits of such materials, life cycle assessment (LCA) and life cycle cost analysis (LCCA) are commonly used. Such assessment allows the analysis of a building over its whole life. However, considering that buildings are very long lasting systems, many associated uncertainties can affect the outcome of LCA and LCCA. To account for all the uncertainty sources and provide a robust solution for building renovation, uncertainty quantification can be applied. In this paper, we use robust optimization under uncertainties to define the most cost-effective and climate-friendly solution. We apply bio-based materials and include carbon storage calculation in the integrated LCA and LCCA. For the robust optimization, we use a novel methodology combining a well-known non-dominated sorting genetic algorithm II (NSGA-II) with surrogate modeling to lower computational cost. The methodology is applied for a case study located in Switzerland. The results show that bio-based materials provide a robust solution for building renovation but to achieve the highest reduction potential, bio-based envelope insulation should be combined with the replacement of the existing fossil heating system.
  •  
4.
  • Galimshina, Alina, 1993, et al. (författare)
  • Robust and resilient renovation solutions in different climate change scenarios
  • 2020
  • Ingår i: IOP Conference Series: Earth and Environmental Science. - : IOP Publishing. - 1755-1307 .- 1755-1315. ; 588:3
  • Konferensbidrag (refereegranskat)abstract
    • Building renovation is currently urgent in order to decrease the energy consumption of a building stock. In order to achieve robust renovation scenarios, uncertainty quantification is needed. Climate change scenarios are important factors and need to be included in the analysis. In this paper, three climate change scenarios are applied probabilistically for a renovation scenario using dimensionality reduction techniques and further uncertainty propagation. The results show that RCP2.6 provides more robust results and saves on average 2.10^5 CHF and 2.10^5kgCO2eq. in a building life cycle comparing to RCP 8.5. The analysis under climate change is also compared to the probabilistic calculations under current climate and the results show the underestimation of both costs and environmental impacts when climate change is not included. It can also be clearly seen that even under the best case of RCP 2.6, building renovation is urgently needed to decrease the environmental impacts and costs.
  •  
5.
  • Galimshina, Alina, 1993, et al. (författare)
  • Statistical method to identify robust building renovation choices for environmental and economic performance
  • 2020
  • Ingår i: Building and Environment. - : Elsevier BV. - 0360-1323. ; 183
  • Tidskriftsartikel (refereegranskat)abstract
    • Building renovation is urgently required to decrease the energy consumption of the existing building stock and reduce greenhouse gas emissions coming from the building sector. Selecting an appropriate renovation strategy is challenging due to the long building service life and consequent uncertainties. In this paper, we propose a new framework for the robust assessment of renovation strategies in terms of environmental and economic performance of the building's life cycle. First, we identify the possible renovation strategies and define the probability distributions for 74 uncertain parameters. Second, we create an integrated workflow for Life Cycle Assessment (LCA) and Life Cycle Cost analysis (LCC) and make use of Sobol’ indices to identify a prioritization strategy for the renovation. Finally, the selected renovation scenario is assessed by metamodeling techniques to calculate its robustness. The results of three case studies of residential buildings from different construction periods show that the priority in renovation should be given to the heating system replacement, which is followed by the exterior wall insulation and windows. This result is not in agreement with common renovation practices and this discrepancy is discussed at the end of the paper.
  •  
6.
  • Galimshina, Alina, 1993, et al. (författare)
  • Strategies for robust renovation of residential buildings in Switzerland
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Building renovation is urgently required to reduce the environmental impact associated with the building stock. Typically, building renovation is performed by envelope insulation and/or changing the fossil-based heating system. The goal of this paper is to provide strategies for robust renovation considering uncertainties on the future evolution of climate, energy grid, and user behaviors, amongst others by applying life cycle assessment and life cycle cost analysis. The study includes identifying optimal renovation options for the envelope and heating systems for building representatives from all construction periods that are currently in need of renovation in Switzerland. The findings emphasize the paramount importance of heating system replacements across all construction periods. Notably, when incorporating bio-based insulation materials, a balance emerges between environmental impact reduction and low energy operation costs. This facilitates robust, equitable, and low-carbon transformations in Switzerland and similar Northern European contexts while avoiding a carbon spike due to the embodied carbon of the renovation.
  •  
7.
  • Galimshina, Alina, 1993, et al. (författare)
  • What is the optimal robust environmental and cost-effective solution for building renovation? Not the usual one
  • 2021
  • Ingår i: Energy and Buildings. - : Elsevier BV. - 0378-7788. ; 251
  • Tidskriftsartikel (refereegranskat)abstract
    • Buildings are responsible for a large share of CO2 emissions in the world. Building renovation is crucial to decrease the environmental impact and meet the United Nations climate action goals. However, due to buildings’ long service lives, there are many uncertainties that might cause a deviation in the results of a predicted retrofit outcome. In this paper, we determine climate-friendly and cost-effective renovation scenarios for two typical buildings with low and high energy performance in Switzerland using a methodology of robust optmization. First, we create an integrated model for life cycle assessment (LCA) and life cycle cost analysis (LCCA). Second, we define possible renovation measures and possible levels of renovation. Third, we identify and describe the uncertain parameters related to the production, replacement and dismantling of building elements as well as the operational energy use in LCCA and LCA. Afterwards, we carry out a robust multi-objective optimization to identify optimal renovation solutions. The results show that the replacement of the heating system in the building retrofit process is crucial to decrease the environmental impact. They also show that for a building with already good energy performance, the investments are not paid off by the operational savings. The optimal solution for the building with low energy performance includes the building envelope renovation in combination with the heating system replacement. For both buildings, the optimal robust cost-effective and climate-friendly solution is different from the deep renovation practice promoted to decrease the energy consumption of a building.
  •  
8.
  • Habert, Guillaume, et al. (författare)
  • Carbon budgets for buildings: harmonising temporal, spatial and sectoral dimensions
  • 2020
  • Ingår i: Buildings and Cities. - : Ubiquity Press, Ltd.. - 2632-6655. ; 1:1, s. 429-452
  • Tidskriftsartikel (refereegranskat)abstract
    • Target values for creating carbon budgets for buildings are important for developing climate-neutral building stocks. A lack of clarity currently exists for defining carbon budgets for buildings and what constitutes a unit of assessment—particularly the distinction between production-and consumption-based accounting. These different perspectives on the system and the function that is assessed hinder a clear and commonly agreed definition of ‘carbon budgets’ for building construction and operation. This paper explores the processes for establishing a carbon budget for residential and non-residential buildings. A detailed review of current approaches to budget allocation is presented. The temporal and spatial scales of evaluation are considered as well as the distribution rules for sharing the budget between parties or activities. This analysis highlights the crucial need to define the temporal scale, the roles of buildings as physical artefacts and their economic activities. A framework is proposed to accommodate these different perspectives and spatio-temporal scales towards harmonised and comparable cross-sectoral budget definitions. Policy relevance The potential to develop, implement and monitor greenhouse gas-related policies and strategies for buildings will depend on the provision of clear targets. Based on global limits, a carbon budget can establish system boundaries and scalable targets. An operational framework is presented that clarifies greenhouse gas targets for buildings in the different parts of the world that is adaptable to the context and circumstances of a particular place. A carbon budget can enable national regulators to set feasible and legally binding requirements. This will assist the many different stakeholders responsible for decisions on buildings to coordinate and incorporate their specific responsibility at one specific level or scale of activity to ensure overall compliance. Therefore, determining a task specific carbon budget requires an appropriate management of the global carbon budget to ensure that specific budgets overlap, but that the sum of them is equal to the available global budget without double-counting.
  •  
9.
  • Hollberg, Alexander, 1985, et al. (författare)
  • A data-driven parametric tool for under-specified LCA in the design phase
  • 2020
  • Ingår i: IOP Conference Series: Earth and Environmental Science. - : IOP Publishing. - 1755-1307 .- 1755-1315. ; 588:5
  • Konferensbidrag (refereegranskat)abstract
    • Life Cycle Assessment (LCA) is increasingly applied to evaluate the environmental performance of buildings. However, current tools for building LCA require detailed information not available in the decisive early design stages. As a result, LCA is usually applied as post-design evaluation and not used to improve the building design. The goal of this paper is to adapt the method of structured under-specified LCA to the Swiss context and implement it in a design-integrated tool. The users of the tool should be able to get a complete estimation of the life cycle impact based on very few inputs, such as building type, intended use and structural system. In addition, the tool should allow to replace these assumptions with more detailed information step by step throughout the design process. The paper describes the development of a structured database and a parametric tool. Furthermore, it exemplifies the intended workflow during the design process on a building design. The presented approach can be scaled up and adapted to the needs of other national contexts in the future. It facilitates environmental performance optimisation of buildings and supports making use of the big potential the building sector has regarding contributing towards climate action (UN SDG 13).
  •  
10.
  • Hollberg, Alexander, 1985, et al. (författare)
  • Evaluation of BIM-based LCA results for building design
  • 2020
  • Ingår i: Automation in Construction. - : Elsevier BV. - 0926-5805. ; 109
  • Tidskriftsartikel (refereegranskat)abstract
    • Digital tools based on Building Information Modelling (BIM) provide the potential to facilitate environmental performance assessments of buildings. Various tools that use a BIM model for automatic quantity take-off as basis for Life Cycle Assessment (LCA) have been developed recently. This paper describes the first application of such a BIM-LCA tool to evaluate the embodied global warming potential (GWP) throughout the whole design process of a real building. 34 states of the BIM model are analysed weekly. The results show that the embodied GWP during the design phase is twice as high as for the final building. These changes can be mainly attributed to the designers' approach of using placeholder materials that are refined later, besides other reasons. As such, the embodied GWP is highly overestimated and a BIM-based environmental assessment during the design process could be misleading and counterproductive. Finally, three alternatives to the established automatic quantity take-off are discussed for future developments.
  •  
11.
  • Hollberg, Alexander, 1985, et al. (författare)
  • Improving the collaboration between architects and energy consultants through design-integrated early BIM-tools
  • 2019
  • Ingår i: Building Simulation Conference Proceedings. - : IBPSA. - 2522-2708. - 9781713809418 ; 4, s. 2627-2633
  • Konferensbidrag (refereegranskat)abstract
    • There is a lack of optimization of buildings towards energy performance in early design stages in practice. Interviews with architects and energy consultants showed that one reason is the inefficient communication between these two groups. This paper investigates how a design-integrated early-BIM tool can improve the relation between architects and energy consultants to support an optimization process in early design stages and facilitate issuing energy performance certificates. Two case studies show that the early-BIM tool provides meaningful results for the architects involved and can reduce the input time for energy consultants by 50%. Furthermore, the simple 3D model functions as boundary object between the two groups and supports the collaboration.
  •  
12.
  • Hollberg, Alexander, 1985, et al. (författare)
  • Review of visualising LCA results in the design process of buildings
  • 2021
  • Ingår i: Building and Environment. - : Elsevier BV. - 0360-1323. ; 190
  • Forskningsöversikt (refereegranskat)abstract
    • Life Cycle Assessment (LCA) is increasingly used for decision-making in the design process of buildings and neighbourhoods. Therefore, visualisation of LCA results to support interpretation and decision-making becomes more important. The number of building LCA tools and the published literature has increased substantially in recent years. Most of them include some type of visualisation. However, there are currently no clear guidelines and no harmonised way of presenting LCA results. In this paper, we review the current state of the art in visualising LCA results to provide a structured overview. Furthermore, we discuss recent and potential future developments. The review results show a great variety in visualisation options. By matching them with common LCA goals we provide a structured basis for future developments. Case studies combining different kinds of visualisations within the design environment, interactive dashboards, and immersive technologies, such as virtual reality, show a big potential for facilitating the interpretation of LCA results and collaborative design processes. The overview and recommendations presented in this paper provide a basis for future development of intuitive and design-integrated visualisation of LCA results to support decision-making.
  •  
13.
  • Kiamili, Christina, et al. (författare)
  • Detailed Assessment of Embodied Carbon of HVAC Systems for a New Office Building Based on BIM
  • 2020
  • Ingår i: Sustainability. - : MDPI AG. - 2071-1050. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The global shift towards embodied carbon reduction in the building sector has indicated the need for a detailed analysis of environmental impacts across the whole lifecycle of buildings. The environmental impact of heating, ventilation, and air conditioning (HVAC) systems has rarely been studied in detail. Most of the published studies are based on assumptions and rule of thumb techniques. In this study, the requirements and methods to perform a detailed life cycle assessment (LCA) for HVAC systems based on building information modelling (BIM) are assessed and framed for the first time. The approach of linking external product data information to objects using visual programming language (VPL) is tested, and its benefits over the existing workflows are presented. The detailed BIM model of a newly built office building in Switzerland is used as a case study. In addition, detailed project documentation is used to ensure the plausibility of the calculated impact. The LCA results show that the embodied impact of the HVAC systems is three times higher than the targets provided by the Swiss Energy Efficiency Path (SIA 2040). Furthermore, it is shown that the embodied impact of HVAC systems lies in the range of 15–36% of the total embodied impact of office buildings. Nevertheless, further research and similar case studies are needed to provide a robust picture of the embodied environmental impact of HVAC systems. The results could contribute to setting stricter targets in line with the vision of decarbonization of the building sector.
  •  
14.
  • Naneva, Anita, et al. (författare)
  • Integrated BIM-based LCA for the entire building process using an existing structure for cost estimation in the Swiss context
  • 2020
  • Ingår i: Sustainability. - : MDPI AG. - 2071-1050. ; 12:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The building sector has a significant potential to reduce the material resource demand needed for construction and therefore, greenhouse gas (GHG) emissions. Digitalization can help to make use of this potential and improve sustainability throughout the entire building's life cycle. One way to address this potential is through the integration of Life Cycle Assessment (LCA) into the building process by employing Building Information Modeling (BIM). BIM can reduce the effort needed to carry out an LCA, and therefore, facilitate the integration into the building process. Areview of current industry practice and scientific literature shows that companies are lacking the incentive to apply LCA. If applied, there are two main approaches. Either the LCA is performed in a simplified way at the beginning of the building process using imprecise techniques, or it is done at the very end when all the needed information is available, but it is too late for decision-making. One reason for this is the lack of methods, workflows and tools to implement BIM-LCA integration over the whole building development. Therefore, the main objective of this study is to develop an integrated BIM-LCA method for the entire building process by relating it to an established workflow. To avoid an additional effort for practitioners, an existing structure for cost estimation in the Swiss context is used. The established method is implemented in a tool and used in a case study in Switzerland to test the approach. The results of this study show that LCA can be performed continuously in each building phase over the entire building process using existing Building Information Modeling (BIM) techniques for cost estimation. The main benefit of this approach is that it simplifies the application of LCA in the building process and therefore gives incentives for companies to apply it. Moreover, the re-work caused by the need for re-entering data and the usage of many different software tools that characterize most of the current LCA practices is minimized. Furthermore, decision-making, both at the element and building levels, is supported.
  •  
15.
  • Soust-Verdaguer, B., et al. (författare)
  • Implications of using systematic decomposition structures to organize building LCA information: A comparative analysis of national standards and guidelines- IEA EBC ANNEX 72
  • 2020
  • Ingår i: IOP Conference Series: Earth and Environmental Science. - : IOP Publishing. - 1755-1307 .- 1755-1315. ; 588:2
  • Konferensbidrag (refereegranskat)abstract
    • Introduction: The application of the Life Cycle Assessment (LCA) technique to a building requires the collection and organization of a large amount of data over its life cycle. The systematic decomposition method can be used to classify building components, elements and materials, overcome specific difficulties that are encountered when attempting to complete the life cycle inventory and increase the reliability and transparency of results. In this paper, which was developed in the context of the research project IEA EBC Annex 72, we demonstrate the implications of taking such approach and describe the results of a comparison among different national standards/guidelines that are used to conduct LCA for building decomposition. Methods: We initially identified the main characteristics of the standards/guidelines used by Annex participant countries. The “be2226” reference office building was used as a reference to apply the different national standards/guidelines related to building decomposition. It served as a basis of comparison, allowing us to identify the implications of using different systems/standards in the LCA practice, in terms of how these differences affect the LCI structures, LCA databases and the methods used to communicate results. We also analyzed the implications of integrating these standards/guidelines into Building Information Modelling (BIM) to support LCA. Results: Twelve national classification systems/ standards/guidelines for the building decomposition were compared. Differences were identified among the levels of decomposition and grouping principles, as well as the consequences of these differences that were related to the LCI organization. In addition, differences were observed among the LCA databases and the structures of the results. Conclusions: The findings of this study summarize and provide an overview of the most relevant aspects of using a standardized building decomposition structure to conduct LCA. Recommendations are formulated on the basis of these findings.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy