SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hablutzel P. I.) "

Sökning: WFRF:(Hablutzel P. I.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Obst, Matthias, 1974, et al. (författare)
  • A Marine Biodiversity Observation Network for Genetic Monitoring of Hard-Bottom Communities (ARMS-MBON)
  • 2020
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine hard-bottom communities are undergoing severe change under the influence of multiple drivers, notably climate change, extraction of natural resources, pollution and eutrophication, habitat degradation, and invasive species. Monitoring marine biodiversity in such habitats is, however, challenging as it typically involves expensive, non-standardized, and often destructive sampling methods that limit its scalability. Differences in monitoring approaches furthermore hinders inter-comparison among monitoring programs. Here, we announce a Marine Biodiversity Observation Network (MBON) consisting of Autonomous Reef Monitoring Structures (ARMS) with the aim to assess the status and changes in benthic fauna with genomic-based methods, notably DNA metabarcoding, in combination with image-based identifications. This article presents the results of a 30-month pilot phase in which we established an operational and geographically expansive ARMS-MBON. The network currently consists of 20 observatories distributed across European coastal waters and the polar regions, in which 134 ARMS have been deployed to date. Sampling takes place annually, either as short-term deployments during the summer or as long-term deployments starting in spring. The pilot phase was used to establish a common set of standards for field sampling, genetic analysis, data management, and legal compliance, which are presented here. We also tested the potential of ARMS for combining genetic and image-based identification methods in comparative studies of benthic diversity, as well as for detecting non-indigenous species. Results show that ARMS are suitable for monitoring hard-bottom environments as they provide genetic data that can be continuously enriched, re-analyzed, and integrated with conventional data to document benthic community composition and detect non-indigenous species. Finally, we provide guidelines to expand the network and present a sustainability plan as part of the European Marine Biological Resource Centre (www.embrc.eu).
  •  
2.
  • Diopere, E., et al. (författare)
  • Seascape genetics of a flatfish reveals local selection under high levels of gene flow
  • 2018
  • Ingår i: Ices Journal of Marine Science. - : Oxford University Press (OUP). - 1054-3139 .- 1095-9289. ; 75:2, s. 675-689
  • Tidskriftsartikel (refereegranskat)abstract
    • Local adaptation is often found to be in a delicate balance with gene flow in marine species with high dispersal potential. Genotyping with mapped transcriptome-derived markers and advanced seascape statistical analyses are proven tools to uncover the genomic basis of biologically relevant traits under environmental selection. Using a panel of 426 gene-linked single nucleotide polymorphisms (SNPs), we scanned 17 samples (n = 539) of sole (Solea solea L.) from the Northeast Atlantic Ocean and applied a node-based seascape analysis. Neutral loci confirmed a clear distinction between the North Sea-Baltic Sea transition zone and the other Eastern Atlantic samples. At a more subtle level, the latter unit split in an English Channel and North Sea group, and a Bay of Biscay and Atlantic Iberian coast group. A fourth group, the Irish and Celtic Sea, was identified with 19 outlier loci. A pattern of isolation by distance (IBD) characterized the latitudinal distribution. Seascape analyses identified winter seawater temperature, food availability and coastal currents to explain a significant component of geographically distributed genetic variation, suggesting that these factors act as drivers of local adaptation. The evidence for local adaptation is in line with the current understanding on the impact of two key ecological factors, the life-history trait winter mortality and the behaviour of inshore/off-shore spawning. We conclude that the subtle differentiation between two metapopulations (North Sea and Bay of Biscay) mirrors local adaptation. At least three genomic regions with strong population differentiation point to locally divergent selection. Further functional characterization of these genomic regions should help with formulating adaptive management policies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy