SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hamon M. H.) "

Sökning: WFRF:(Hamon M. H.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tercero, M., et al. (författare)
  • 5G systems: The mmMAGIC project perspective on use cases and challenges between 6-100 GHz
  • 2016
  • Ingår i: IEEE Wireless Communications and Networking Conference, WCNC. - 1525-3511. ; 2016-September, s. 200-205
  • Konferensbidrag (refereegranskat)abstract
    • mmMAGIC (Millimetre-Wave Based Mobile Radio Access Network for Fifth Generation Integrated Communications) is an EU funded 5G-PPP project, whose overall objective is to design and pre-develop a mobile radio access technology (RAT) operating in the 6-100 GHz range, capable of impacting standards and other relevant fora. The focus of the project is on extreme Mobile Broadband, which is expected to drive the 5G requirements for massive increase in capacity and data-rates. This paper elaborates on some 5G key research areas such as: identification of the most compelling use-cases and Key Performance Indicators (KPIs) for future 5G systems, advantages and challenges of millimeter-wave (mmWave) technologies, channel measurements and channel modeling, network architecture; and the design of a new mobile radio interface including multi-node and multi-Antenna transceiver architecture.
  •  
2.
  • Minier, V., et al. (författare)
  • Evidence of triggered star formation in G327.3-0.6. Dust-continuum mapping of an infrared dark cloud with P-ArTéMiS
  • 2009
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 501, s. L1-L4
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Expanding HII regions and propagating shocks are common in the environment of young high-mass star-forming complexes. They can compress a pre-existing molecular cloud and trigger the formation of dense cores. We investigate whether these phenomena can explain the formation of high-mass protostars within an infrared dark cloud located at the position of G327.3-0.6 in the Galactic plane, in between two large infrared bubbles and two HII regions. Methods: The region of G327.3-0.6 was imaged at 450 μ m with the CEA P-ArTéMiS bolometer array on the Atacama Pathfinder EXperiment telescope in Chile. APEX/LABOCA and APEX-2A, and Spitzer/IRAC and MIPS archives data were used in this study. Results: Ten massive cores were detected in the P-ArTéMiS image, embedded within the infrared dark cloud seen in absorption at both 8 and 24 μm. Their luminosities and masses indicate that they form high-mass stars. The kinematical study of the region suggests that the infrared bubbles expand toward the infrared dark cloud. Conclusions: Under the influence of expanding bubbles, star formation occurs in the infrared dark areas at the border of HII regions and infrared bubbles.
  •  
3.
  • Söder, Lennart, et al. (författare)
  • Experience and challenges with short-term balancing in European systems with large share of wind power
  • 2012
  • Ingår i: IEEE Transactions on Sustainable Energy. - 1949-3029. ; 3:4, s. 853-861
  • Tidskriftsartikel (refereegranskat)abstract
    • The amount of wind power in the world is quickly increasing. The background for this development is improved technology, decreased costs for the units, and increased concern regarding environmental problems of competing technologies such as fossil fuels. Some areas are starting to experience very high penetration levels of wind and there have been many instances when wind power has exceeded 50% of the electrical energy production in some balancing areas. The aims of this paper are to show the increased need for balancing, caused by wind power in the minutes to hourly time scale, and to show how this balancing has been performed in some systems when the wind share was higher than 50%. Experience has shown that this is possible, but that there are some challenges that have to be solved as the amount of wind power increases.
  •  
4.
  • Flechard, Chris R., et al. (författare)
  • Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling
  • 2020
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 17:6, s. 1583-1620
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of atmospheric reactive nitrogen (N-r) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC/dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of N-r deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet N-r deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and N-r inputs and losses, these data were also combined with in situ flux measurements of NO, N2O and CH4 fluxes; soil NO3- leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BAS-FOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from -70 to 826 gCm(-2) yr(-1) at total wet + dry inorganic N-r deposition rates (N-dep) of 0.3 to 4.3 gNm(-2) yr(-1) and from -4 to 361 g Cm-2 yr(-1) at N-dep rates of 0.1 to 3.1 gNm(-2) yr(-1) in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2 exchange, while CH4 and N2O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated N-dep where N-r leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N-2 losses by denitrification. Nitrogen losses in the form of NO, N2O and especially NO3- were on average 27%(range 6 %-54 %) of N-dep at sites with N-dep < 1 gNm(-2) yr(-1) versus 65% (range 35 %-85 %) for N-dep > 3 gNm(-2) yr(-1). Such large levels of N-r loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with N-r deposition up to 2-2.5 gNm(-2) yr(-1), with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP/GPP ratio). At elevated N-dep levels (> 2.5 gNm(-2) yr(-1)), where inorganic N-r losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate N-dep levels was partly the result of geographical cross-correlations between N-dep and climate, indicating that the actual mean dC/dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. N-dep.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy