SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Harner Tom) "

Search: WFRF:(Harner Tom)

  • Result 1-13 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bidleman, Terry F, et al. (author)
  • Chiral Pesticides in Soil and Water and Exchange with the Atmosphere
  • 2002
  • In: TheScientificWorldJOURNAL. - : Hindawi Limited. ; 2, s. 357-373
  • Journal article (peer-reviewed)abstract
    • The enantiomers of chiral pesticides are often metabolised at different rates in soil and water, leading to nonracemic residues. This paper reviews enantioselective metabolism of organochlorine pesticides (OCPs) in soil and water, and the use of enantiomers to follow transport and fate processes. Residues of chiral OCPs and their metabolites are frequently nonracemic in soil, although exceptions occur in which the OCPs are racemic. In soils where enantioselective degradation and/or metabolite formation has taken place, some OCPs usually show the same degradation preference — e.g., depletion of (+)trans-chlordane (TC) and (-)cis-chlordane (CC), and enrichment of the metabolite (+)heptachlor exo-epoxide (HEPX). The selectivity is ambivalent for other chemicals; preferential loss of either (+) or (-)o,p?-DDT and enrichment of either (+) or (-)oxychlordane (OXY) occurs in different soils. Nonracemic OCPs are found in air samples collected above soil which contains nonracemic residues. The enantiomer profiles of chlordanes in ambient air suggests that most chlordane in northern Alabama air comes from racemic sources (e.g., termiticide emissions), whereas a mixture of racemic and nonracemic (volatilisation from soil) sources supplies chlordane to air in the Great Lakes region. Chlordanes and HEPX are also nonracemic in arctic air, probably the result of soil emissions from lower latitudes. The (+) enantiomer of a-hexachlorocyclohexane (a-HCH) is preferentially metabolised in the Arctic Ocean, arctic lakes and watersheds, the North American Great Lakes, and the Baltic Sea. In some marine regions (the Bering and Chukchi Seas, parts of the North Sea) the preference is reversed and (-)a-HCH is depleted. Volatilisation from seas and large lakes can be traced by the appearance of nonracemic a-HCH in the air boundary layer above the water. Estimates of microbial degradation rates for a-HCH in the eastern Arctic Ocean and an arctic lake have been made from the enantiomer fractions (EFs) and mass balance in the water column. Apparent pseudo first-order rate constants in the eastern Arctic Ocean are 0.12 year-1 for (+)a-HCH, 0.030 year-1 for (-)a-HCH, and 0.037 year-1 for achiral ?-HCH. These rate constants are 3–10 times greater than those for basic hydrolysis in seawater. Microbial breakdown may compete with advective outflow for long-term removal of HCHs from the Arctic Ocean. Rate constants estimated for the arctic lake are about 3–8 times greater than those in the ocean.
  •  
2.
  • Björnsdotter, Maria, 1989- (author)
  • Ultra-short-chain perfluoroalkyl acids : Environmental occurrence, sources and distribution
  • 2021
  • Doctoral thesis (other academic/artistic)abstract
    • Ultra-short-chain perfluoroalkyl acids (PFAAs) is a group of highly fluorinated and very stable chemicals. Their small molecular structure in combination with the acidic functional group result in highly polar compounds and concern has been raised as these substances may threaten our drinking water supplies.The aim with this thesis was to study and assess the occurrence, sources, and distribution of ultra-short-chain PFAAs in the environment. The main objectives were to analyze ultra-short-chain PFAAs in surface water with different anthropogenic impact, in atmospheric deposition and surface snow at local and remote locations, and to examine the relevance of local and diffuse input pathways to Lake Vättern, Sweden.The results revealed that ultra-short-chain PFAAs are released to the environment from various sources such as firefighting training sites, landfills, and hazardous waste management facilities. Trifluoroacetic acid (TFA) and perfluoropropanoic acid (PFPrA) were detected in all atmospheric deposition samples and surface snow samples, including those collected at remote sites in the Arctic. Atmospheric oxidation of volatile precursors was found to play a major role in the global distribution of these as well as being the main input pathway to Lake Vättern. A total annual flux of 120–170 kg and 1.3–2.0 kg was observed for TFA and PFPrA, respectively.Trifluoromethane sulfonic acid (TFMS) was detected in most samples and was reported for the first time in atmospheric deposition and surface snow at local as well as remote locations. The discovery of TFMS at remote locations suggests that TFMS is globally distributed. Neither atmospheric degradation of volatile precursors, nor the long-range oceanic transport seem to be main sources of TFMS to the Arctic environment, and local sources seem to be of higher importance for TFMS input to Lake Vättern.
  •  
3.
  • Genualdi, Susie, et al. (author)
  • Global Distribution of Linear and Cyclic Volatile Methyl Siloxanes in Air
  • 2011
  • In: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 45:8, s. 3349-3354
  • Journal article (peer-reviewed)abstract
    • The global distribution of linear and cyclic volatile methyl silxoanes (VMS) was investigated at 20 sites worldwide, including 5 locations in the Arctic, using sorbent-impregnated polyurethane foam (SIP) disk passive air samplers. Cyclic VMS are currently being considered for regulation because they are high production volume chemicals that are potentially persistent, bioaccumulative, and toxic. Linear and cyclic VMS (including L3, L4, L5, D3, D4, DS, and D6) were analyzed for in air at all urban, background, and Arctic sites. Concentrations of D3 and D4 are significantly correlated, as are D5 and D6, which suggests different sources for these two pairs of compounds. Elevated concentrations of D3 and D4 on the West coast of North America and at high elevation sites suggest these sites are influenced by trans-Pacific transport, while D5 and D6 have elevated concentrations in urban areas, which is most likely due to personal care product use. Measured concentrations of 1)5 were compared to modeled concentrations generated using both the Danish Eulerian Hemispheric Model (DEHM) and the Berkeley-Trent Global Contaminant Fate Model (BETR Global). The correlation coefficients (r) between the measured and modeled results were 0.73 and 0.58 for the DEHM and BETA models, respectively. Agreement between measurements and models indicate that the sources, transport pathways, and sinks of D5 in the global atmosphere are fairly well understood.
  •  
4.
  • Harner, Tom, et al. (author)
  • Air synthesis review : polycyclic aromatic compounds in the oil sands region
  • 2018
  • In: Environmental Reviews. - : Canadian Science Publishing. - 1181-8700 .- 1208-6053. ; 26:4, s. 430-468
  • Research review (peer-reviewed)abstract
    • This air synthesis review presents the current state of knowledge on the sources, fates, and effects for polycyclic aromatic compounds (PACs) and related chemicals released to air in the oil sands region (OSR) in Alberta, Canada. Through the implementation of the Joint Canada-Alberta Oil Sands Monitoring Program in 2012 a vast amount of new information on PACs has been acquired through directed monitoring and research projects and reported to the scientific community and public. This new knowledge addresses questions related to cumulative effects and informs the sustainable management of the oil sands resource while helping to identify gaps in understanding and priorities for future work. As a result of this air synthesis review on PACs, the following topics have been identified as new science priorities: (i) improving emissions reporting to better account for fugitive mining emissions of PACs that includes a broader range of PACs beyond the conventional polycyclic aromatic hydrocarbons (PAHs) including, inter alia, alkylated-PAHs (alk-PAHs), dibenzothiophene (DBT), alk-DBTs, nitro-PAHs, oxy-PAHs including quinones and thia-and aza-arenes; (ii) improving information on the ambient concentrations, long-range transport, and atmospheric deposition of these broader classes of PACs and their release (with co-contaminants) from different types of mining activities; (iii) further optimizing electricity-free and cost-effective approaches for assessing PAC deposition (e.g., snow sampling, lichens, passive ambient sampling) spatially across the OSR and downwind regions; (iv) designing projects that integrate monitoring efforts with source attribution models and ecosystem health studies to improve understanding of sources, receptors, and effects; (v) further optimizing natural deposition archives (e.g., sediment, peat, tree rings) and advanced forensic techniques (e.g., isotope analysis, marker compounds) to provide better understanding of sources of PACs in the OSR over space and time; (vi) conducting process research to improve model capabilities for simulating atmospheric chemistry of PACs and assessing exposure to wildlife and humans; and (vii) developing tools and integrated strategies for assessing cumulative risk to wildlife and humans by accounting for the toxicity of the mixture of chemicals in air rather than on a single compound basis.
  •  
5.
  •  
6.
  • Hung, Hayley, et al. (author)
  • Toward the next generation of air quality monitoring : Persistent organic pollutants
  • 2013
  • In: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 80, s. 591-598
  • Journal article (peer-reviewed)abstract
    • Persistent Organic Pollutants (POPs) are global pollutants that can migrate over long distances and bioaccumulate through food webs, posing health risks to wildlife and humans. Multilateral environmental agreements, such as the Stockholm Convention on POPs, were enacted to identify POPs and establish the conditions to control their release, production and use. A Global Monitoring Plan was initiated under the Stockholm Convention calling for POP monitoring in air as a core medium; however long temporal trends (>10 years) of atmospheric POPs are only available at a few selected sites. Spatial coverage of air monitoring for POPs has recently significantly improved with the introduction and advancement of passive air samplers. Here, we review the status of air monitoring and modeling activities and note major uncertainties in data comparability, deficiencies of air monitoring and modeling in urban and alpine areas, and lack of emission inventories for most POPs. A vision for an internationally-integrated strategic monitoring plan is proposed which could provide consistent and comparable monitoring data for POPs supported and supplemented by global and regional transport models. Key recommendations include developing expertise in all aspects of air monitoring to ensure data comparability and consistency; partnering with existing air quality and meteorological networks to leverage synergies; facilitating data sharing with international data archives; and expanding spatial coverage with passive air samplers. Enhancing research on the stability of particle-bound chemicals is needed to assess exposure and deposition in urban areas, and to elucidate long-range transport. Conducting targeted measurement campaigns in specific source areas would enhance regional models which can be extrapolated to similar regions to estimate emissions. Ultimately, reverse-modeling combined with air measurements can be used to derive “emission” as an indicator to assess environmental performance with respect to POPs on the country, region, or global level.
  •  
7.
  • Johansson, Jana, 1985- (author)
  • Sources, transport and fate of perfluoroalkyl acids in the atmosphere
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • Perfluoroalkyl acids (PFAAs) are man-made chemicals which have been observed in the global environment, even in locations far away from where they are emitted. These persistent substances are taken up in humans and biota and may have toxic effects. Knowledge about how PFAAs are dispersed in the environment is needed to discern strategies to manage their sources and to evaluate the efficacy of adopted legislation. This thesis aimed to increase our understanding of the sources of PFAAs to the atmosphere and how PFAAs are transported in air. The results of Paper I demonstrated that gaseous perfluorooctanoic acid (PFOA) sorbs to typical glass fibre filters (GFFs) used in high-volume air sampling of PFAAs. As a consequence, the fraction of gaseous PFOA present in sampled air is underestimated, while the fraction of PFOA associated with aerosols is overestimated. Replacing GFFs with filters deactivated through silanisation and siliconisation did not eliminate this sampling artefact and is therefore not recommended as a means to determine the gas-particle partitioning of PFAAs. In Paper II, monitoring of the mass of PFOA transferred from water solutions of pH 0.2-5.5 demonstrated that the acid dissociation constant of linear PFOA and the four most ubiquitous branched PFOA isomers is around or below 1. Furthermore, the results demonstrated that the presence of counter ions and organic matter in water retarded, rather than enhanced, the volatilisation of PFOA. Therefore, volatilisation of all isomers of PFOA from environmental waters is expected to be negligible. To further study the transfer of PFAAs from environmental waters to air, Paper III simulated the process of sea spray generation in the laboratory. Strong enrichment of PFAAs was observed from bulk water to the surface microlayer and to aerosols. The enrichment increased with PFAA chain length, indicating that this process is of greater importance for more surface active substances. The highest enrichment was observed in aerosols < 1.6 µm, which can travel over long distances if not rained out. Based on the measured aerosol enrichment factors we estimated that approximately 70 metric tonnes of PFAAs are aerosolised from the global oceans yearly and that 3% of this mass is deposited in terrestrial environments. Paper IV reported the occurrence of branched PFOA isomers in deposition sampled in five geographical locations. The presence of these isomers demonstrated that atmospheric transformation of fluorotelomer alcohols is not the only ongoing source of PFAAs to air. We hypothesised that, additionally, both sea spray aerosols and direct emissions from manufacturing sources contributed to the contamination of the precipitation on different spatial scales. Although further research is required to determine the relative importance of different sources to the atmosphere locally and globally, this thesis has substantially advanced the state-of-the-science by i) demonstrating the significance of an air sampling artefact discussed as an uncertainty in the scientific literature over the past decade, ii) definitively ruling out volatilisation from environmental waters as a source of PFOA to air, iii) demonstrating transfer of PFAAs from seawater to air via sea spray aerosols and thus quantifying the environmental importance of this process, and iv) ultimately demonstrating that several types of sources of PFAAs impact the global atmosphere and thus PFAA contamination patterns in precipitation.
  •  
8.
  •  
9.
  • MacLeod, Matthew, et al. (author)
  • Junge relationships in measurement data for cyclic siloxanes in air
  • 2013
  • In: Chemosphere. - : Elsevier BV. - 0045-6535 .- 1879-1298. ; 93:5, s. 830-834
  • Journal article (peer-reviewed)abstract
    • In 1974, Junge postulated a relationship between variability of concentrations of gases in air at remote locations and their atmospheric residence time, and this Junge relationship has subsequently been observed empirically for a range of trace gases. Here, we analyze two previously-published datasets of concentrations of cyclic volatile methyl siloxanes (cVMS) in air and find Junge relationships in both. The first dataset is a time series of concentrations of decamethylcyclopentasiloxane (D-5) measured between January and June, 2009 at a rural site in southern Sweden that shows a Junge relationship in the temporal variability of the measurements. The second dataset consists of measurements of hexamethylcyclotrisiloxane (D-3), octamethylcyclotetrasiloxane (D-4) and D-5 made simultaneously at 12 sites in the Global Atmospheric Passive Sampling (GAPS) network that shows a Junge relationship in the spatial variability of the three cVMS congeners. We use the Junge relationship for the GAPS dataset to estimate atmospheric lifetimes of dodecamethylcyclohexasiloxane (D-6), 8:2-fluorotelomer alcohol and trichlorinated biphenyls that are within a factor of 3 of estimates based on degradation rate constants for reaction with hydroxyl radical determined in laboratory studies.
  •  
10.
  •  
11.
  •  
12.
  • Wang, Zhanyun, et al. (author)
  • Enhancing Scientific Support for the Stockholm Convention’s Implementation : An Analysis of Policy Needs for Scientific Evidence
  • 2022
  • In: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 56:5, s. 2936-2949
  • Journal article (peer-reviewed)abstract
    • The Stockholm Convention is key to addressing the global threats of persistent organic pollutants (POPs) to humanity and the environment. It has been successful in identifying new POPs, but its national implementation remains challenging, particularly by low- and middle-income Parties. Concerted action is needed to assist Parties in implementing the Convention’s obligations. This analysis aims to identify and recommend research and scientific support needed for timely implementation of the Convention. We aim this analysis at scientists and experts from a variety of natural and social sciences and from all sectors (academia, civil society, industry, and government institutions), as well as research funding agencies. Further, we provide practical guidance to scientists and experts to promote the visibility and accessibility of their work for the Convention’s implementation, followed by recommendations for sustaining scientific support to the Convention. This study is the first of a series on analyzing policy needs for scientific evidence under global governance on chemicals and waste. 
  •  
13.
  • Wiberg, Karin, et al. (author)
  • Chiral analysis of organochlorine pesticides in Alabama soils
  • 2001
  • In: Chemosphere. ; 45:6-7, s. 843-8
  • Journal article (peer-reviewed)abstract
    • The enantiomeric composition of organochlorine (OC) pesticide residues was investigated in 32 agricultural and 3 cemetery soils from Alabama. The enantiomeric signatures were similar to those from other soils in US and Canada. The enantiomer fractions (EFs) of o,p′-DDT showed great variability, ranging from 0.41 to 0.57 while the EFs of chlordanes and chlordane metabolites were less variable and differed in general significantly from racemic. Enantioselective depletion of (+)trans-chlordane, (−)cis-chlordane, the first eluting enantiomer of MC5, and enrichment of (+)heptachlor-exo-epoxide and (+)oxychlordane was found in a large majority of the samples with detectable residues. The enantiomeric composition of α-hexachlorocyclohexane was racemic or close to racemic.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-13 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view