SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hauback Bjorn C.) "

Sökning: WFRF:(Hauback Bjorn C.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Callini, Elsa, et al. (författare)
  • Complex and liquid hydrides for energy storage
  • 2016
  • Ingår i: Applied Physics A. - : Springer Science and Business Media LLC. - 0947-8396 .- 1432-0630. ; 122:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The research on complex hydrides for hydrogen storage was initiated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized, and the knowledge regarding the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant portion of the research groups active in the field of complex hydrides is collaborators in the International Energy Agreement Task 32. This paper reports about the important issues in the field of complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and is an excellent summary of the recent achievements.
  •  
2.
  • Casillas Trujillo, Luis, et al. (författare)
  • Interstitial carbon in bcc HfNbTiVZr high-entropy alloy from first principles
  • 2020
  • Ingår i: Physical Review Materials. - : AMER PHYSICAL SOC. - 2475-9953. ; 4:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The remarkable mechanical properties of high-entropy alloys can be further improved by interstitial alloying. In this work we employ density functional theory calculations to study the solution energies of dilute carbon interstitial atoms in tetrahedral and octahedral sites in bcc HfNbTiVZr. Our results indicate that carbon interstitials in tetrahedral sites are unstable, and the preferred octahedral sites present a large spread in the energy of solution. The inclusion of carbon interstitials induces large structural relaxations with long-range effects. The effect of local chemical environment on the energy of solution is investigated by performing a local cluster expansion including studies of its correlation with the carbon atomic Voronoi volume. However, the spread in solution energetics cannot be explained with a local environment analysis only pointing towards a complex, long-range influence of interstitial carbon in this alloy.
  •  
3.
  • Christensen, Axel Norlund, et al. (författare)
  • Thermally induced phase transitions of barium oxalates
  • 2011
  • Ingår i: Solid State Sciences. - : Elsevier BV. - 1873-3085 .- 1293-2558. ; 13:7, s. 1407-1413
  • Tidskriftsartikel (refereegranskat)abstract
    • The thermal decomposition of BaC2O4 center dot 3.5H(2)O and BaC2O4 center dot 0.5H(2)O was investigated using in situ synchrotron X-ray and neutron powder diffraction. The decomposition routes for the barium oxalate hydrates were observed to depend on the applied heating rate. Thermal decomposition of BaC2O4 center dot 0.5H(2)O showed transformation to alpha-BaC2O4 and to beta-BaC2O4 prior to the formation of BaCO3. The decomposition of BaC2O4 center dot 3.5H(2)O showed formation of BaC2O4 center dot 0.5H(2)O at 58 degrees C and the hemi hydrate transforms to alpha-BaC2O4 at 187 degrees C using a relatively fast heating rate of 6.25 degrees C/min. The phase transitions were more complicated using lower heating rate, which also reveal formation of beta-BaC2O4 coexisting with alpha-BaC2O4 along with an unidentified compound. Heating alpha- and beta-BaC2O4 to higher temperatures (T > 400 degrees C) produced BaCO3. A sample of alpha-BaC2O4 was prepared in situ by thermal decomposition of BaC2O4 center dot 3.5H(2)O on a powder neutron diffractometer. The neutron diffraction data has broad diffraction peaks due to small crystallite sizes and overlapping Bragg reflections. [A structural model for alpha-BaC2O4 was derived from the neutron pattern, triclinic, space group P-1, a = 5.127(7), b = 8.905(12), c = 9.068(12) angstrom, alpha = 82.74(1), beta = 99.46(2), gamma = 100.10(1)degrees measured at T= 300 degrees C. The average Ba-O distances are 2.84(3) angstrom and 2.66(3) angstrom for Ba 1 and Ba2 respectively, C-O atom distances in the oxalate ions were found in the range 1.25(3)-1.26(4) angstrom, and C-C distances were 1.60(1)-1.61(1) angstrom]. (C) 2011 Elsevier Masson SAS. All rights reserved.
  •  
4.
  • Eggert, Bruno G. F., et al. (författare)
  • Exploring V-Fe-Co-Ni-Al and V-Fe-Co-Ni-Cu high entropy alloys for magnetocaloric applications
  • 2022
  • Ingår i: Journal of Alloys and Compounds. - : Elsevier. - 0925-8388 .- 1873-4669. ; 921
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of V1-x-Fe-Co-Ni-Al1+ x and V1-x-Fe-Co-Ni-Cu1+ x high entropy alloys with varying compositions (0 <= x <= 0.75) has been investigated for magnetocaloric applications. Compositions were selected according to established properties, such as configurational entropy, atomic size difference, and enthalpy of mixing. To study the influence of composition on magnetic ordering temperatures, the V and (Al/Cu) contents were changed while the content of Fe, Co and Ni was retained at 20 at. % each. The crystal structure and microstructure of the as-cast alloys were compared to literature phase guidelines and thermodynamic calculations based on the CALPHAD approach. The V-Fe-Co-Ni-Al compounds are monophasic and crystallize in a disordered body centered cubic structure or its ordered B2 variant, while the V-Fe-Co-Ni-Cu compounds are all multiphasic. Magnetic transitions in the V-Fe-Co-Ni-Al system span over 400 K, with Curie temperature ranging from 155 K in equiatomic VFeCoNiAl, to 456 K in non-equiatomic V0.25FeCoNiAl1.75. The V-Fe-Co-Ni-Cu alloys display magnetic transitions that span about 150 K, with Curie temperature ranging from 230 K for equiatomic VFeCoNiCu to 736 K for non-equiatomic V0.25FeCoNiCu1.75. The magnetic properties of the V-Fe-Co-Ni-Cu compounds were evaluated by means of density functional theory. Individual element-specific moments, magnetic exchange integrals between atomic pairs, and Curie temperatures were calculated. V0.85FeCoNiCu1.15 is selected due to its Curie temperature of 329 K, and its calculated isothermal entropy change of 0.75 J/kg.K for a field change of 5 T is comparable to other 3d metal-based high entropy alloys that form disordered solid solutions. (c) 2022 The Author(s). Published by Elsevier B.V. CC_BY_4.0
  •  
5.
  • Nazer, N. S., et al. (författare)
  • In operando neutron diffraction study of LaNdMgNi9H13 as a metal hydride battery anode
  • 2017
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753. ; 343, s. 502-512
  • Tidskriftsartikel (refereegranskat)abstract
    • La2MgNi9-related alloys are superior metal hydride battery anodes as compared to the commercial AB5 alloys. Nd-substituted La2-yNdyMgNi9 intermetallics are of particular interest because of increased diffusion rate of hydrogen and thus improved performance at high discharge currents. The present work presents in operando characterization of the LaNdMgNi9 intermetallic as anode for the nickel metal hydride (Ni-MH) battery. We have studied the structural evolution of LaNdMgNi9 during its charge and discharge using in situ neutron powder diffraction. The work included experiments using deuterium gas and electrochemical charge-discharge measurements. The alloy exhibited a high electrochemical discharge capacity (373 mAh/g) which is 20% higher than the AB5 type alloys. A saturated β-deuteride synthesized by solid-gas reaction at PD2 = 1.6 MPa contained 12.9 deuterium atoms per formula unit (D/f.u.) which resulted in a volume expansion of 26.1%. During the electrochemical charging, the volume expansion (23.4%) and D-contents were found to be slightly reduced. The reversible electrochemical cycling is performed through the formation of a two-phase mixture of the α-solid solution and β-hydride phases. Nd substitution contributes to the high-rate dischargeability, while maintaining a good cyclic stability. Electrochemical Impedance Spectroscopy (EIS) was used to characterize the anode electrode on cycling. A mathematical model for the impedance response of a porous electrode was utilized. The EIS showed a decreased hydrogen transport rate during the long-term cycling, which indicated a corresponding slowing down of the electrochemical processes at the surface of the metal hydride anode.
  •  
6.
  • Nygard, Magnus Moe, et al. (författare)
  • Counting electrons - A new approach to tailor the hydrogen sorption properties of high-entropy alloys
  • 2019
  • Ingår i: Acta Materialia. - : PERGAMON-ELSEVIER SCIENCE LTD. - 1359-6454 .- 1873-2453. ; 175, s. 121-129
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the structure and hydrogen storage properties of a series of quaternary and quintary high-entropy alloys related to the ternary system TiVNb with powder X-ray diffraction (PXD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and manometric measurements in a Sieverts apparatus. The alloys have body-centred cubic (bcc) crystal structures and form face-centred cubic (fcc) metal hydrides with hydrogen-to-metal ratios close to 2 by hydrogenation. The onset temperature for hydrogen desorption, T-onset, decreases linearly with the valence-electron concentration, VEC. Moreover, the volumetric expansion per metal atom from the bcc alloys to the fcc hydrides, [(V/Z)(fcc) - (V/Z)(bcc)]/(V/Z)(bcc), increases linearly with the VEC. Therefore, it seems that a larger expansion of the lattice destabilizes the metal hydrides and that this effect can be tuned by altering the VEC. Kissinger analyses performed on the DSC measurements indicate that the destabilization is a thermodynamic rather than kinetic effect. Based upon these insights we have identified TiVCrNbH8 as a material with suitable thermodynamics for hydrogen storage in the solid state. This HEA-based hydride has a reversible hydrogen storage capacity of 1.96 wt% H at room temperature and moderate H-2-pressures. Moreover, it is not dependent on any elaborate activation procedure to absorb hydrogen.
  •  
7.
  • Nygard, Magnus Moe, et al. (författare)
  • Hydrogen storage in high-entropy alloys with varying degree of local lattice strain
  • 2019
  • Ingår i: International journal of hydrogen energy. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0360-3199 .- 1879-3487. ; 44:55, s. 29140-29149
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the structure and hydrogen storage properties of a series of Ti, V, Zr, Nb and Ta based high-entropy alloys (HEAs) with varying degree of local lattice strain by means of synchrotron radiation powder X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and manometric measurements in a Sieverts apparatus. The obtained alloys have body-centred cubic (bcc) crystal structures and form face-centred cubic (fcc) metal hydrides with hydrogen-to-metal ratios close to 2. No correlation between the hydrogen storage capacity and the local lattice strain delta r is observed in this work. Both bcc and fcc unit cells expand linearly with the zirconium-to-metal ratio [Zr]/[M], and increased concentration of Zr stabilizes the hydrides. When heated, the hydrides decompose into the original bcc alloys if [Zr]/[M]<12.5 at.%. The hydrides phase-separate in a hydrogen-induced decomposition type process for [Zr]/[M]>= 12.5 at.%. The result is then a combination of two bcc phases, one with a larger and the other with a smaller unit cell than the original bcc alloy. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy