SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Haug Marcus) "

Sökning: WFRF:(Haug Marcus)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brucalassi, Anna, et al. (författare)
  • Full System Test and early Preliminary Acceptance Europe results for CRIRES
  • 2018
  • Ingår i: Ground-Based And Airborne Instrumentation For Astronomy VII. - : SPIE. - 9781510619586
  • Konferensbidrag (refereegranskat)abstract
    • CRIRES+ is the new high-resolution NIR echelle spectrograph intended to be operated at the platform B of VLT Unit telescope UT3. It will cover from Y to M bands (0.95-5.3um) with a spectral resolution of R = 50000 or R = 100000. The main scientific goals are the search of super-Earths in the habitable zone of low-mass stars, the characterisation of transiting planets atmosphere and the study of the origin and evolution of stellar magnetic fields. Based on the heritage of the old adaptive optics (AO) assisted VLT instrument CRIRES, the new spectrograph will present improved optical layout, a new detector system and a new calibration unit providing optimal performances in terms of simultaneous wavelength coverage and radial velocity accuracy (a few m/s). The total observing efficiency will be enhanced by a factor of 10 with respect to CRIRES. An innovative spectro-polarimetry mode will be also offered and a new metrology system will ensure very high system stability and repeatability. Fiinally, the CRIRES+ project will also provide the community with a new data reduction software (DRS) package. CRIRES+ is currently at the initial phase of its Preliminary Acceptance in Europe (PAE) and it will be commissioned early in 2019 at VLT. This work outlines the main results obtained during the initial phase of the full system test at ESO HQ Garching.
  •  
2.
  • Dorn, Reinhold J., et al. (författare)
  • CRIRES+ on sky : High spectral resolution at infrared wavelength enabling better science at the ESO VLT
  • 2022
  • Ingår i: Ground-Based And Airborne Instrumentation For Astronomy IX. - : SPIE - International Society for Optical Engineering. - 9781510653504 - 9781510653498
  • Konferensbidrag (refereegranskat)abstract
    • CRIRES+ extended the capabilities of CRIRES, the CRyogenic InfraRed Echelle Spectrograph. It transformed this VLT instrument into a cross-dispersed spectrograph to increase the wavelength range that is covered simultaneously by a factor of ten. In addition, a new detector focal plane array of three Hawaii 2RG detectors with a 5.3 mu m cut-off wavelength replaced the existing detectors. Amongst many other improvements a new spectropolarimetric unit was added and the calibration system has been enhanced. The instrument was installed at the VLT on Unit Telescope 3 beginning of 2020 and successfully commissioned and verified for science operations during 2021, partly remote from Europe due to the pandemic. The instrument was subsequently offered to the community from October 2021 onwards. This article describes the performance and capabilities of this development and presents on sky results.
  •  
3.
  • Sirocko, Frank, et al. (författare)
  • Muted multidecadal climate variability in central Europe during cold stadial periods
  • 2021
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 14, s. 651-658
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last ice age, the Northern Hemisphere experienced a series of abrupt millennial-scale climatic changes linked to variations in the strength of the Atlantic Meridional Overturning Circulation and sea-ice extent. However, our understanding of their impacts on decadal-scale climate variability in central Europe has been limited by the lack of high-resolution continental archives. Here, we present a near annual-resolution climate proxy record of central European temperature reconstructed from the Eifel maar lakes of Holzmaar and Auel in Germany, spanning the past 60,000 years. The lake sediments reveal a series of previously undocumented multidecadal climate cycles of around 20 to 150 years that persisted through the last glacial cycle. The periodicity of these cycles suggests that they are related to the Atlantic multidecadal climate oscillations found in the instrumental record and in other climate archives during the Holocene. Our record shows that multidecadal variability in central Europe was strong during all warm interstadials, but was substantially muted during all cold stadial periods. We suggest that this decrease in multidecadal variability was the result of the atmospheric circulation changes associated with the weakening of the Atlantic Meridional Overturning Circulation and the expansion of North Atlantic sea-ice cover during the coldest parts of the last ice age.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy