SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hedfalk Kristina 1969) "

Sökning: WFRF:(Hedfalk Kristina 1969)

  • Resultat 1-25 av 52
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Backmark, Anna, 1979, et al. (författare)
  • Affinity tags can reduce merohedral twinning of membrane protein crystals
  • 2008
  • Ingår i: Acta Crystallographica. Section D: Biological Crystallography. - 1399-0047 .- 0907-4449. ; D64, s. 1183-1186
  • Tidskriftsartikel (refereegranskat)abstract
    • This work presents a comparison of the crystal packing of three eukaryotic membrane proteins: human aquaporin 1, human aquaporin 5 and a spinach plasma membrane aquaporin. All were purified from expression constructs both with and without affinity tags. With the exception of tagged aquaporin 1, all constructs yielded crystals. Two significant effects of the affinity tags were observed: crystals containing a tag typically diffracted to lower resolution than those from constructs encoding the protein sequence alone and constructs without a tag frequently produced crystals that suffered from merohedral twinning. Twinning is a challenging crystallographic problem that can seriously hinder solution of the structure. Thus, for integral membrane proteins, the addition of an affinity tag may help to disrupt the approximate symmetry of the protein and thereby reduce or avoid merohedral twinning.
  •  
2.
  • Fischer, Gerhard, 1978, et al. (författare)
  • Crystal structure of a yeast aquaporin at 1.15 angstrom reveals a novel gating mechanism.
  • 2009
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1545-7885 .- 1544-9173. ; 7:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporins are transmembrane proteins that facilitate the flow of water through cellular membranes. An unusual characteristic of yeast aquaporins is that they frequently contain an extended N terminus of unknown function. Here we present the X-ray structure of the yeast aquaporin Aqy1 from Pichia pastoris at 1.15 A resolution. Our crystal structure reveals that the water channel is closed by the N terminus, which arranges as a tightly wound helical bundle, with Tyr31 forming H-bond interactions to a water molecule within the pore and thereby occluding the channel entrance. Nevertheless, functional assays show that Aqy1 has appreciable water transport activity that aids survival during rapid freezing of P. pastoris. These findings establish that Aqy1 is a gated water channel. Mutational studies in combination with molecular dynamics simulations imply that gating may be regulated by a combination of phosphorylation and mechanosensitivity.
  •  
3.
  • Frick, Anna, 1982, et al. (författare)
  • X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking.
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 111:17, s. 6305-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Human aquaporin 2 (AQP2) is a water channel found in the kidney collecting duct, where it plays a key role in concentrating urine. Water reabsorption is regulated by AQP2 trafficking between intracellular storage vesicles and the apical membrane. This process is tightly controlled by the pituitary hormone arginine vasopressin and defective trafficking results in nephrogenic diabetes insipidus (NDI). Here we present the X-ray structure of human AQP2 at 2.75 Å resolution. The C terminus of AQP2 displays multiple conformations with the C-terminal α-helix of one protomer interacting with the cytoplasmic surface of a symmetry-related AQP2 molecule, suggesting potential protein-protein interactions involved in cellular sorting of AQP2. Two Cd(2+)-ion binding sites are observed within the AQP2 tetramer, inducing a rearrangement of loop D, which facilitates this interaction. The locations of several NDI-causing mutations can be observed in the AQP2 structure, primarily situated within transmembrane domains and the majority of which cause misfolding and ER retention. These observations provide a framework for understanding why mutations in AQP2 cause NDI as well as structural insights into AQP2 interactions that may govern its trafficking.
  •  
4.
  • Jansson, Anna, 1985, et al. (författare)
  • Monitoring the osmotic response of single yeast cells through force measurement in the environmental scanning electron microscope
  • 2014
  • Ingår i: Measurement science and technology. - : IOP Publishing. - 0957-0233 .- 1361-6501. ; 25:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a measurement system that combines an environmental scanning electron microscope (ESEM) and an atomic force microscope (AFM). This combination enables studies of static and dynamic mechanical properties of hydrated specimens, such as individual living cells. The integrated AFM sensor provides direct and continuous force measurement based on piezoresistive force transduction, allowing the recording of events in the millisecond range. The in situ ESEM-AFM setup was used to study Pichia pastoris wild-type yeast cells. For the first time, a quantified measure of the osmotic response of an individual yeast cell inside an ESEM is presented. With this technique, cell size changes due to humidity variations can be monitored with nanometre accuracy. In addition, mechanical properties were extracted from load-displacement curves. A Young's modulus of 13-15 MPa was obtained for the P. pastoris yeast cells. The developed method is highly interesting as a complementary tool for the screening of drugs directed towards cellular water transport activity and provides new possibilities of studying mechanosensitive regulation of aquaporins.
  •  
5.
  • Lind, Ulrika, et al. (författare)
  • Analysis of aquaporins from the euryhaline barnacle Balanus improvisus reveals differential expression in response to changes in salinity
  • 2017
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Barnacles are sessile macro-invertebrates, found along rocky shores in coastal areas worldwide. The euryhaline bay barnacle Balanus improvisus (Darwin, 1854) (= Amphibalanus improvisus) can tolerate a wide range of salinities, but the molecular mechanisms underlying the osmoregulatory capacity of this truly brackish species are not well understood. Aquaporins are pore-forming integral membrane proteins that facilitate transport of water, small solutes and ions through cellular membranes, and that have been shown to be important for osmoregulation in many organisms. The knowledge of the function of aquaporins in crustaceans is, however, limited and nothing is known about them in barnacles. We here present the repertoire of aquaporins from a thecostracan crustacean, the barnacle B. improvisus, based on genome and transcriptome sequencing. Our analyses reveal that B. improvisus contains eight genes for aquaporins. Phylogenetic analysis showed that they represented members of the classical water aquaporins (Aqp1, Aqp2), the aquaglyceroporins (Glp1, Glp2), the unorthodox aquaporin (Aqp12) and the arthropod-specific big brain aquaporin (Bib). Interestingly, we also found two big brain-like proteins (BibL1 and BibL2) constituting a new group of aquaporins not yet described in arthropods. In addition, we found that the two water-specific aquaporins were expressed as C-terminal splice variants. Heterologous expression of some of the aquaporins followed by functional characterization showed that Aqp1 transported water and Glp2 water and glycerol, agreeing with the predictions of substrate specificity based on 3D modeling and phylogeny. To investigate a possible role for the B. improvisus aquaporins in osmoregulation, mRNA expression changes in adult barnacles were analysed after long-term acclimation to different salinities. The most pronounced expression difference was seen for AQP1 with a substantial (>100-fold) decrease in the mantle tissue in low salinity (3 PSU) compared to high salinity (33 PSU). Our study provides a base for future mechanistic studies on the role of aquaporins in osmoregulation. © 2017 Lind et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  •  
6.
  • Nyblom, Anna Maria, 1975, et al. (författare)
  • Exceptional overproduction of a functional human membrane protein
  • 2007
  • Ingår i: Protein Expression and Purification. - : Elsevier BV. - 1046-5928 .- 1096-0279. ; 56:1, s. 110-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Eukaryotic-especially human-membrane protein overproduction remains a major challenge in biochemistry. Heterologously overproduced and purified proteins provide a starting point for further biochemical, biophysical and structural studies, and the lack of sufficient quantities of functional membrane proteins is frequently a bottleneck hindering this. Here, we report exceptionally high production levels of a correctly folded and crystallisable recombinant human integral membrane protein in its active form; human aquaporin 1 (hAQP1) has been heterologously produced in the membranes of the methylotrophic yeast Pichia pastoris. After solubilisation and a two step purification procedure, at least 90 mg hAQP1 per liter of culture is obtained. Water channel activity of this purified hAQP was verified by reconstitution into proteoliposomes and performing stopped-flow vesicle shrinkage measurements. Mass spectrometry confirmed the identity of hAQPI in crude membrane preparations, and also from purified protein reconstituted into proteoliposomes. Furthermore, crystallisation screens yielded diffraction quality crystals of untagged recombinant hAQP1. This study illustrates the power of the yeast P. pastoris as a host to produce exceptionally high yields of a functionally active, human integral membrane protein for subsequent functional and structural characterization. (c) 2007 Elsevier Inc. All rights reserved.
  •  
7.
  • Nyblom, Anna Maria, 1975, et al. (författare)
  • Structural and functional analysis of SoPIP2;1 mutants adds insight into plant aquaporin gating.
  • 2009
  • Ingår i: Journal of molecular biology. - : Elsevier BV. - 1089-8638 .- 0022-2836. ; 387:3, s. 653-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant plasma membrane aquaporins facilitate water flux into and out of plant cells, thus coupling their cellular function to basic aspects of plant physiology. Posttranslational modifications of conserved phosphorylation sites, changes in cytoplasmic pH and the binding of Ca(2+) can regulate water transport activity by gating the plasma membrane aquaporins. A structural mechanism unifying these diverse biochemical signals has emerged for the spinach aquaporin SoPIP2;1, although several questions concerning the opening mechanism remain. Here, we describe the X-ray structures of the S115E and S274E single SoPIP2;1 mutants and the corresponding double mutant. Phosphorylation of these serines is believed to increase water transport activity of SoPIP2;1 by opening the channel. However, all mutants crystallised in a closed conformation, as confirmed by water transport assays, implying that neither substitution fully mimics the phosphorylated state. Nevertheless, a half-turn extension of transmembrane helix 1 occurs upon the substitution of Ser115, which draws the C(alpha) atom of Glu31 10 A away from its wild-type conformation, thereby disrupting the divalent cation binding site involved in the gating mechanism. Mutation of Ser274 disorders the C-terminus but no other significant conformational changes are observed. Inspection of the hydrogen-bond interactions within loop D suggested that the phosphorylation of Ser188 may also produce an open channel, and this was supported by an increased water transport activity for the S188E mutant and molecular dynamics simulations. These findings add additional insight into the general mechanism of plant aquaporin gating.
  •  
8.
  • Schmitz, Florian, et al. (författare)
  • A bimolecular fluorescence complementation flow cytometry screen for membrane protein interactions
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Interactions between membrane proteins within a cellular environment are crucial for all living cells. Robust methods to screen and analyse membrane protein complexes are essential to shed light on the molecular mechanism of membrane protein interactions. Most methods for detecting protein:protein interactions (PPIs) have been developed to target the interactions of soluble proteins. Bimolecular fluorescence complementation (BiFC) assays allow the formation of complexes involving PPI partners to be visualized in vivo, irrespective of whether or not these interactions are between soluble or membrane proteins. In this study, we report the development of a screening approach which utilizes BiFC and applies flow cytometry to characterize membrane protein interaction partners in the host Saccharomyces cerevisiae. These data allow constructive complexes to be discriminated with statistical confidence from random interactions and potentially allows an efficient screen for PPIs in vivo within a high-throughput setup.
  •  
9.
  • Sjöhamn, Jennie, 1986, et al. (författare)
  • Applying bimolecular fluorescence complementation to screen and purify aquaporin protein:protein complexes.
  • 2016
  • Ingår i: Protein science : a publication of the Protein Society. - : Wiley. - 1469-896X. ; 25:12, s. 2196-2208
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein:protein interactions play key functional roles in the molecular machinery of the cell. A major challenge for structural biology is to gain high-resolution structural insight into how membrane protein function is regulated by protein:protein interactions. To this end we present a method to express, detect, and purify stable membrane protein complexes that are suitable for further structural characterization. Our approach utilizes bimolecular fluorescence complementation (BiFC), whereby each protein of an interaction pair is fused to nonfluorescent fragments of yellow fluorescent protein (YFP) that combine and mature as the complex is formed. YFP thus facilitates the visualization of protein:protein interactions in vivo, stabilizes the assembled complex, and provides a fluorescent marker during purification. This technique is validated by observing the formation of stable homotetramers of human aquaporin 0 (AQP0). The method's broader applicability is demonstrated by visualizing the interactions of AQP0 and human aquaporin 1 (AQP1) with the cytoplasmic regulatory protein calmodulin (CaM). The dependence of the AQP0-CaM complex on the AQP0 C-terminus is also demonstrated since the C-terminal truncated construct provides a negative control. This screening approach may therefore facilitate the production and purification of membrane protein:protein complexes for later structural studies by X-ray crystallography or single particle electron microscopy.
  •  
10.
  • Tornroth-Horsefield, S, et al. (författare)
  • Structural mechanism of plant aquaporin gating
  • 2006
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 439:7077, s. 688-694
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants counteract fluctuations in water supply by regulating all aquaporins in the cell plasma membrane. Channel closure results either from the dephosphorylation of two conserved serine residues under conditions of drought stress, or from the protonation of a conserved histidine residue following a drop in cytoplasmic pH due to anoxia during flooding. Here we report the X-ray structure of the spinach plasma membrane aquaporin SoPIP2; 1 in its closed conformation at 2.1 angstrom resolution and in its open conformation at 3.9 angstrom resolution, and molecular dynamics simulations of the initial events governing gating. In the closed conformation loop D caps the channel from the cytoplasm and thereby occludes the pore. In the open conformation loop D is displaced up to 16 angstrom and this movement opens a hydrophobic gate blocking the channel entrance from the cytoplasm. These results reveal a molecular gating mechanism which appears conserved throughout all plant plasma membrane aquaporins.
  •  
11.
  • Törnroth-Horsefield, Susanna, 1973, et al. (författare)
  • Aquaporin gating
  • 2007
  • Ingår i: Journal of Biomolecular Structure & Dynamics. ; 24:6, s. 719-721
  • Tidskriftsartikel (refereegranskat)
  •  
12.
  • Törnroth-Horsefield, Susanna, 1973, et al. (författare)
  • Structural insights into eukaryotic aquaporin regulation.
  • 2010
  • Ingår i: FEBS letters. - : Wiley. - 1873-3468 .- 0014-5793. ; 584:12, s. 2580-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporin-mediated water transport across cellular membranes is an ancient, ubiquitous mechanism within cell biology. This family of integral membrane proteins includes both water selective pores (aquaporins) and transport facilitators of other small molecules such as glycerol and urea (aquaglyceroporins). Eukaryotic aquaporins are frequently regulated post-translationally by gating, whereby the rate of flux through the channel is controlled, or by trafficking, whereby aquaporins are shuttled from intracellular storage sites to the plasma membrane. A number of high-resolution X-ray structures of eukaryotic aquaporins have recently been reported and the new structural insights into gating and trafficking that emerged from these studies are described. Basic structural themes reoccur, illustrating how the problem of regulation in diverse biological contexts builds upon a limited set of possible solutions.
  •  
13.
  •  
14.
  • Zeng, Jiao, et al. (författare)
  • High-resolution structure of a fish aquaporin reveals a novel extracellular fold
  • 2022
  • Ingår i: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 5:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporins are protein channels embedded in the lipid bilayer in cells from all organisms on earth that are crucial for water homeostasis. In fish, aquaporins are believed to be important for osmoregulation; however, the molecular mechanism behind this is poorly understood. Here, we present the first structural and functional characterization of a fish aquaporin; cpAQP1aa from the fresh water fish climbing perch (Anabas testudineus), a species that is of high osmoregulatory interest because of its ability to spend time in seawater and on land. These studies show that cpAQP1aa is a water-specific aquaporin with a unique fold on the extracellular side that results in a constriction region. Functional analysis combined with molecular dynamic simulations suggests that phosphorylation at two sites causes structural perturbations in this region that may have implications for channel gating from the extracellular side.
  •  
15.
  • Öberg, Fredrik, 1982, et al. (författare)
  • Glycosylation increases the thermostability of human aquaporin 10 protein.
  • 2011
  • Ingår i: The Journal of biological chemistry. - 1083-351X. ; 286:36, s. 31915-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Human aquaporin10 (hAQP10) is a transmembrane facilitator of both water and glycerol transport in the small intestine. This aquaglyceroporin is located in the apical membrane of enterocytes and is believed to contribute to the passage of water and glycerol through these intestinal absorptive cells. Here we overproduced hAQP10 in the yeast Pichia pastoris and observed that the protein is glycosylated at Asn-133 in the extracellular loop C. This finding confirms one of three predicted glycosylation sites for hAQP10, and its glycosylation is unique for the human aquaporins overproduced in this host. Nonglycosylated protein was isolated using both glycan affinity chromatography and through mutating asparagine 133 to a glutamine. All three forms of hAQP10 where found to facilitate the transport of water, glycerol, erythritol, and xylitol, and glycosylation had little effect on functionality. In contrast, glycosylated hAQP10 showed increased thermostability of 3-6 °C compared with the nonglycosylated protein, suggesting a stabilizing effect of the N-linked glycan. Because only one third of hAQP10 was glycosylated yet the thermostability titration was mono-modal, we suggest that the presence of at least one glycosylated protein within each tetramer is sufficient to convey an enhanced structural stability to the remaining hAQP10 protomers of the tetramer.
  •  
16.
  • Öberg, Fredrik, 1982, et al. (författare)
  • Insight into factors directing high production of eukaryotic membrane proteins; production of 13 human AQPs in Pichia pastoris.
  • 2009
  • Ingår i: Molecular membrane biology. - : Informa UK Limited. - 1464-5203 .- 0968-7688. ; 26:4, s. 215-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Membrane proteins are key players in all living cells. To achieve a better understanding of membrane protein function, significant amounts of purified protein are required for functional and structural analyses. Overproduction of eukaryotic membrane proteins, in particular, is thus an essential yet non-trivial task. Hence, improved understanding of factors which direct a high production of eukaryotic membrane proteins is desirable. In this study we have compared the overproduction of all human aquaporins in the eukaryotic host Pichia pastoris. We report quantitated production levels of each homologue and the extent of their membrane localization. Our results show that the protein production levels vary substantially, even between highly homologous aquaporins. A correlation between the extents of membrane insertion with protein function also emerged, with a higher extent of membrane insertion for pure water transporters compared to aquaporin family members with other substrate specificity. Nevertheless, the nucleic acid sequence of the second codon appears to play an important role in overproduction. Constructs containing guanine at the first position of this codon (being part of the mammalian Kozak sequence) are generally produced at a higher level, which is confirmed for hAQP8. In addition, mimicking the yeast consensus sequence (ATGTCT) apparently has a negative influence on the production level, as shown for hAQP1. Moreover, by mutational analysis we show that the yield of hAQP4 can be heavily improved by directing the protein folding pathway as well as stabilizing the aquaporin tetramer.
  •  
17.
  • Aricescu, A R, et al. (författare)
  • Eukaryotic expression: developments for structural proteomics.
  • 2006
  • Ingår i: Acta Crystallographica Section D: Biological Crystallography. - 1399-0047 .- 0907-4449. ; 62, s. 1114-1124
  • Tidskriftsartikel (refereegranskat)abstract
    • The production of sufficient quantities of protein is an essential prelude to a structure determination, but for many viral and human proteins this cannot be achieved using prokaryotic expression systems. Groups in the Structural Proteomics In Europe (SPINE) consortium have developed and implemented high-throughput (HTP) methodologies for cloning, expression screening and protein production in eukaryotic systems. Studies focused on three systems: yeast (Pichia pastoris and Saccharomyces cerevisiae), baculovirus-infected insect cells and transient expression in mammalian cells. Suitable vectors for HTP cloning are described and results from their use in expression screening and protein-production pipelines are reported. Strategies for co-expression, selenomethionine labelling (in all three eukaryotic systems) and control of glycosylation (for secreted proteins in mammalian cells) are assessed.
  •  
18.
  • Bill, Roslyn M., et al. (författare)
  • Analysis of the pore of the unusual major intrinsic protein channel, yeast Fps1p.
  • 2001
  • Ingår i: The Journal of biological chemistry. - 0021-9258 .- 1083-351X. ; 276:39, s. 36543-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Fps1p is a glycerol efflux channel from Saccharomyces cerevisiae. In this atypical major intrinsic protein neither of the signature NPA motifs of the family, which are part of the pore, is preserved. To understand the functional consequences of this feature, we analyzed the pseudo-NPA motifs of Fps1p by site-directed mutagenesis and assayed the resultant mutant proteins in vivo. In addition, we took advantage of the fact that the closest bacterial homolog of Fps1p, Escherichia coli GlpF, can be functionally expressed in yeast, thus enabling the analysis in yeast cells of mutations that make this typical major intrinsic protein more similar to Fps1p. We observed that mutations made in Fps1p to "restore" the signature NPA motifs did not substantially affect channel function. In contrast, when GlpF was mutated to resemble Fps1p, all mutants had reduced activity compared with wild type. We rationalized these data by constructing models of one GlpF mutant and of the transmembrane core of Fps1p. Our model predicts that the pore of Fps1p is more flexible than that of GlpF. We discuss the fact that this may accommodate the divergent NPA motifs of Fps1p and that the different pore structures of Fps1p and GlpF may reflect the physiological roles of the two glycerol facilitators.
  •  
19.
  • Bill, R. M., et al. (författare)
  • Aquaporins - Expression, purification and characterization
  • 2021
  • Ingår i: Biochimica Et Biophysica Acta-Biomembranes. - : Elsevier BV. - 0005-2736. ; 1863:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaporin water channels facilitate the bi-directional flow of water and small, neutral solutes down an osmotic gradient in all kingdoms of life. Over the last two decades, the availability of high-quality protein has underpinned progress in the structural and functional characterization of these water channels. In particular, recombinant protein technology has guaranteed the supply of aquaporin samples that were of sufficient quality and quantity for further study. Here we review the features of successful expression, purification and characterization strategies that have underpinned these successes and that will drive further breakthroughs in the field. Overall, Escherichia coli is a suitable host for prokaryotic isoforms, while Pichia pastoris is the most commonly-used recombinant host for eukaryotic variants. Generally, a two-step purification procedure is suitable after solubilization in glucopyranosides and most structures are determined by X-ray following crystallization.
  •  
20.
  •  
21.
  • Caddeo, Andrea, et al. (författare)
  • LPIAT1/MBOAT7 contains a catalytic dyad transferring polyunsaturated fatty acids to lysophosphatidylinositol.
  • 2021
  • Ingår i: Biochimica et biophysica acta. Molecular and cell biology of lipids. - : Elsevier BV. - 1879-2618 .- 1388-1981. ; 1866:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Human membrane bound O-acyltransferase domain-containing 7 (MBOAT7), also known as lysophosphatidylinositol acyltransferase 1 (LPIAT1), is an enzyme involved in the acyl-chain remodeling of phospholipids via the Lands' cycle. The MBOAT7 rs641738 variant has been associated with the entire spectrum of fatty liver disease (FLD) and neurodevelopmental disorders, but the exact enzymatic activity and the catalytic site of the protein are still unestablished. Human wild type MBOAT7 and three MBOAT7 mutants missing in the putative catalytic residues (N321A, H356A, N321A+H356A) were produced into Pichia pastoris, and purified using Ni-affinity chromatography. The enzymatic activity of MBOAT7 wild type and mutants was assessed measuring the incorporation of radiolabeled fatty acids into lipid acceptors. MBOAT7 preferentially transferred 20:4 and 20:5 polyunsaturated fatty acids (PUFAs) to lysophosphatidylinositol (LPI). On the contrary, MBOAT7 showed weak enzymatic activity for transferring saturated and unsaturated fatty acids, regardless the lipid substrate. Missense mutations in the putative catalytic residues (N321A, H356A, N321A+H356A) result in a loss of O-acyltransferase activity. Thus, MBOAT7 catalyzes the transfer of PUFAs to lipid acceptors. MBOAT7 shows the highest affinity for LPI, and missense mutations at the MBOAT7 putative catalytic dyad inhibit the O-acyltransferase activity of the protein. Our findings support the hypothesis that the association between the MBOAT7 rs641738 variant and the increased risk of NAFLD is mediated by changes in the hepatic phosphatidylinositol acyl-chain remodeling. Taken together, the increased understanding of the enzymatic activity of MBOAT7 give insights into the understanding on the basis of FLD.
  •  
22.
  • Carlesso, Antonio, 1990, et al. (författare)
  • Yeast as a tool for membrane protein production and structure determination
  • 2022
  • Ingår i: Fems Yeast Research. - : Oxford University Press (OUP). - 1567-1356 .- 1567-1364. ; 22:1
  • Forskningsöversikt (refereegranskat)abstract
    • Although the majority of eukaryotic MEMBRANE PROTEIN structures are DERIVED FROM PROTEINS produced in HEK293 and insect cells, the authors show here the importance of yeast as a production host and its role as an essential player in the production of eukaryotic membrane proteins for structural and functional analysis. Membrane proteins are challenging targets to functionally and structurally characterize. An enduring bottleneck in their study is the reliable production of sufficient yields of stable protein. Here, we evaluate all eukaryotic membrane protein production experiments that have supported the deposition of a high-resolution structure. We focused on the most common yeast host systems, Saccharomyces cerevisiae and Pichia pastoris. The first high-resolution structure of a membrane protein produced in yeast was described in 1999 and today there are 186 structures of alpha-helical membrane proteins, representing 101 unique proteins from 37 families. Homologous and heterologous production are equally common in S. cerevisiae, while heterologous production dominates in P. pastoris, especially of human proteins, which represent about one-third of the total. Investigating protein engineering approaches (78 proteins from seven families) demonstrated that the majority contained a polyhistidine tag for purification, typically at the C-terminus of the protein. Codon optimization and truncation of hydrophilic extensions were also common approaches to improve yields. We conclude that yeast remains a useful production host for the study of alpha-helical membrane proteins.
  •  
23.
  • Fantoni, A, et al. (författare)
  • Improved yields of full-length functional human FGF1 can be achieved using the methylotrophic yeast Pichia pastoris
  • 2007
  • Ingår i: Protein Expression and Purification. - : Elsevier BV. - 1096-0279 .- 1046-5928. ; 52:1, s. 31-39
  • Tidskriftsartikel (refereegranskat)abstract
    • We have produced human fibroblast growth factor 1 (hFGF1) in the methylotrophic yeast Pichia pastoris in order to obtain the large amounts of active protein required for subsequent functional and structural characterization. Four constructs were made to examine both intracellular and secreted expression, with variations in the location of the His6 tag at either end of the peptide. hFGF1 could be produced from all four constructs in shake flasks, but production was optimized by growing only the highest-yielding of these strains, which produced hFGF1 intracellularly, under tightly controlled conditions in a 3 L fermentor. One hundred and eight milligrams of pure protein was achieved per liter culture (corresponding to 0.68 mg of protein per gram of wet cells), the function of which was verified using NIH 3T3 cell cultures. This is a 30-fold improvement over previously reported yields of full-length hFGF1.
  •  
24.
  • Ferndahl, Cecilia, 1975, et al. (författare)
  • Increasing cell biomass in Saccharomyces cerevisiae increases recombinant protein yield: the use of a respiratory strain as a microbial cell factory
  • 2010
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recombinant protein production is universally employed as a solution to obtain the milligram to gram quantities of a given protein required for applications as diverse as structural genomics and biopharmaceutical manufacture. Yeast is a well-established recombinant host cell for these purposes. In this study we wanted to investigate whether our respiratory Saccharomyces cerevisiae strain, TM6*, could be used to enhance the productivity of recombinant proteins over that obtained from corresponding wild type, respiro-fermentative strains when cultured under the same laboratory conditions. Results: Here we demonstrate at least a doubling in productivity over wild-type strains for three recombinant membrane proteins and one recombinant soluble protein produced in TM6* cells. In all cases, this was attributed to the improved biomass properties of the strain. The yield profile across the growth curve was also more stable than in a wild-type strain, and was not further improved by lowering culture temperatures. This has the added benefit that improved yields can be attained rapidly at the yeast's optimal growth conditions. Importantly, improved productivity could not be reproduced in wild-type strains by culturing them under glucose fed-batch conditions: despite having achieved very similar biomass yields to those achieved by TM6* cultures, the total volumetric yields were not concomitantly increased. Furthermore, the productivity of TM6* was unaffected by growing cultures in the presence of ethanol. These findings support the unique properties of TM6* as a microbial cell factory. Conclusions: The accumulation of biomass in yeast cell factories is not necessarily correlated with a proportional increase in the functional yield of the recombinant protein being produced. The respiratory S. cerevisiae strain reported here is therefore a useful addition to the matrix of production hosts currently available as its improved biomass properties do lead to increased volumetric yields without the need to resort to complex control or cultivation schemes. This is anticipated to be of particular value in the production of challenging targets such as membrane proteins.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 52
Typ av publikation
tidskriftsartikel (47)
forskningsöversikt (2)
konferensbidrag (1)
doktorsavhandling (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (51)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Hedfalk, Kristina, 1 ... (51)
Neutze, Richard, 196 ... (14)
Hohmann, Stefan, 195 ... (8)
Bill, Roslyn M. (8)
Pingitore, Piero, 19 ... (8)
Öberg, Fredrik, 1982 (8)
visa fler...
Kjellbom, Per (5)
Gustafsson, Lena, 19 ... (5)
Sjöhamn, Jennie, 198 ... (5)
Nyblom, Anna Maria, ... (5)
Karlgren, Sara, 1975 (5)
Törnroth-Horsefield, ... (4)
Rydström, Jan, 1943 (4)
Lindkvist-Petersson, ... (4)
Johanson, Urban (3)
Larsson, Christer, 1 ... (3)
Romeo, Stefano, 1976 (3)
Fischer, Gerhard, 19 ... (3)
Kosinska-Eriksson, U ... (3)
Bill, R. M. (3)
Indiveri, C. (3)
Indiveri, Cesare (3)
Filipsson, Caroline, ... (3)
Wang, Yi (2)
Gros, G (2)
Sundell, Kristina, 1 ... (2)
Meier, W. (2)
Tamás, Markus J., 19 ... (2)
Tajkhorshid, Emad (2)
Norbeck, Joakim, 196 ... (2)
Mancina, Rosellina M ... (2)
Andersson, Martin, 1 ... (2)
Karlsson, Maria (2)
Hallgren, Karin (2)
Eriksson, Leif A, 19 ... (2)
Bill, RM (2)
Pirazzi, Carlo (2)
Backmark, Anna, 1979 (2)
Tornroth-Horsefield, ... (2)
Horsefield, Rob, 197 ... (2)
Wang, Hao (2)
Mullins, J G (2)
Bill, Roslyn (2)
Scalise, M. (2)
Motta, Benedetta Mar ... (2)
Scalise, Mariafrance ... (2)
Mullins, J. G. L. (2)
Ekvall, Mikael, 1977 (2)
Frick, Anna, 1982 (2)
Isaksson, Simon, 198 ... (2)
visa färre...
Lärosäte
Göteborgs universitet (45)
Chalmers tekniska högskola (24)
Lunds universitet (8)
Uppsala universitet (2)
Malmö universitet (1)
RISE (1)
visa fler...
Karlstads universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (52)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (46)
Teknik (6)
Medicin och hälsovetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy