SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hedmer Maria) "

Sökning: WFRF:(Hedmer Maria)

  • Resultat 1-25 av 59
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Gliga, Anda R., et al. (författare)
  • Exposure to Mild Steel Welding and Changes in Serum Proteins With Putative Neurological Function—A Longitudinal Study
  • 2020
  • Ingår i: Frontiers in Public Health. - : Frontiers Media SA. - 2296-2565. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Welders are exposed to high levels of metal particles, consisting mainly of iron and manganese (Mn) oxide. Metal particles, especially those containing Mn can be neurotoxic. In this exploratory study, we evaluated associations between welding and expression of 87 putative neurology-related proteins in serum in a longitudinal approach. The study cohort from southern Sweden included welders working with mild steel (n = 56) and controls (n = 67), all male and non-smoking, which were sampled at two timepoints (T1, T2) 6-year apart. Observed associations in the longitudinal analysis (linear mixed models) were further evaluated (linear regression models) in another cross-sectional sample which included welders (n = 102) and controls (n = 89) who were sampled only once (T1 or T2). The median respirable dust levels for welders after adjusting for respiratory protection was at T1 0.6 (5–95 percentile: 0.2–4.2) and at T2 0.5 (0.1–1.8) mg/m3. The adjusted median respirable Mn concentration was at T2 0.049 mg/m3 (0.003–0.314) with a Spearman correlation between adjusted respirable dust and respirable Mn of rS = 0.88. We identified five neurology-related proteins that were differentially expressed in welders vs. controls in the longitudinal sample, of which one (nicotinamide/nicotinic acid mononucleotide adenylyltransferase 1; NMNAT1) was also differentially expressed in the cross-sectional sample. NMNAT1, an axon-protective protein linked to Alzheimers disease, was upregulated in welders compared with controls but no associations were discerned with degree of exposure (welders only: years welding, respirable dust, cumulative exposure). However, we identified five additional proteins that were associated with years welding (GCSF, EFNA4, CTSS, CLM6, VWC2; welders only) both in the longitudinal and in the cross-sectional samples. We also observed several neurology-related proteins that were associated with age and BMI. Our study indicates that low-to-moderate exposure to welding fumes is associated with changes in circulating levels of neurology-related proteins.
  •  
3.
  • Gliga, Anda R., et al. (författare)
  • Mild steel welding is associated with alterations in circulating levels of cancer-related proteins
  • 2019
  • Ingår i: Archives of Toxicology. - : Springer Science and Business Media LLC. - 0340-5761 .- 1432-0738. ; 93:12, s. 3535-3547
  • Tidskriftsartikel (refereegranskat)abstract
    • Welding fumes were recently classified as carcinogenic to humans and worldwide millions work as welders or perform welding operations. The purpose of this study was to identify new biomarkers of welding-induced carcinogenesis. We evaluated a panel of 91 putative cancer-related proteins in serum in a cohort of welders working with mild steel (n = 77) and controls (n = 94) from southern Sweden sampled on two occasions 6-year apart using a longitudinal analysis (linear mixed models). The significant results from the longitudinal analysis were tested for reproducibility in welders (n = 88) and controls (n = 69) sampled once during the same sampling period as timepoint 1 or timepoint 2 (linear regression models), i.e., in a cross-sectional setting. The models were adjusted for age, body-mass index, and use of snus. All study participants were non-smokers at recruitment. Exposure to welding fumes was assessed using questionnaires and respirable dust measurement in the breathing zone that was adjusted for personal respiratory protection equipment. The median respirable dust in welders was 0.7 (0.2–4.2) and 0.5 (0.1–1.9) mg/m3 at the first and second timepoints, respectively. We identified 14 cancer-related proteins that were differentially expressed in welders versus controls in the longitudinal analysis, out of which three were also differentially expressed in the cross-sectional analysis (cross-sectional group). Namely, syndecan 1 (SDC1), folate receptor 1 (FOLR1), and secreted protein acidic and cysteine rich (SPARC) were downregulated, in welders compared with controls. In addition, FOLR1 was negatively associated with years welding. Disease and function analysis indicated that the top proteins are related to lung cancer as well as cell invasion and migration. Our study indicates that moderate exposure to welding fumes is associated with changes in circulating levels of putative cancer-related proteins, out of which FOLR1 showed a clear dose–response relationship. It is, however, unclear to which extent these changes are adaptive or potential early biomarkers of cancer.
  •  
4.
  •  
5.
  •  
6.
  • Hedmer, Maria, et al. (författare)
  • Diesel Exhaust Exposure Assessment Among Tunnel Construction Workers—Correlations Between Nitrogen Dioxide, Respirable Elemental Carbon, and Particle Number
  • 2017
  • Ingår i: Annals of Work Exposures and Health. - : Oxford University Press (OUP). - 2398-7308 .- 2398-7316. ; 61:5, s. 539-553
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Occupational exposure to diesel exhaust is common due the widespread use of dieselpowered combustion engines. Diesel exhaust is chemically complex and consists of thousands of compounds present as gases and particulate matter. Both nitrogen dioxide (NO2) and elemental carbon(EC) have been used as markers for diesel exhaust exposure. Currently EC is regarded as the best surrogate of diesel exhaust. The objective was to quantify the occupational exposure to diesel exhaust in underground tunnel construction work using a multi-metric approach, and to investigate the correlations between NO2, respirable EC, respirable organic carbon (OC), respirable total carbon(TC), respirable dust (RD), and particle number. Also, the use of NO2 as a proxy for diesel exhaust was evaluated, how much of the variability in the diesel exhaust exposure was attributed to within and between individual factors and if there was a difference between expert and self-administered measurements of NO2. Methods: The personal exposure to diesel exhaust was assessed by expert supervised measurements of NO2, EC, OC, TC, RD and particle number in the breathing zones of underground tunnel workers. Stationary sampling of NO2, EC, OC, TC, RD, size-fractioned mass concentration, and particle number were conducted. The personal and stationary measurements were conducted on threeoccasions simultaneously. The workers measured their exposure by repeated self-administered measurements of NO2. The self-administered measurements were performed twice for each worker with at least one month lag between the samplings. Results: In the simultaneous sampling of diesel exhaust, the geometric mean (GM) concentration of NO2 and respirable EC were 72 μg m−3 (10th–90th percentile 34–140 μg m−3) and 2.6 μg m−3 (10th–90th percentile 1.6–7.3 μg m−3), respectively. The GM for OC and TC was 28 μg m−3 (10th–90th percentile 20–42 μg m−3) and 31 μg m−3 (10th–90th percentile 20–50 μg m−3), respectively. The GM for RD and particle number was 180 μg m−3 (10th–90th percentile 20–530 μg m−3) and 47 900 cm−3 (10th–90th percentile (27 500–94 100 cm−3), respectively. A significant correlation was found between NO2 and respirable EC [Spearman’s correlation r = 0.53 (P = 0.05)]. The within-worker variability of NO2 was 45.5% and the between-worker variability was 54.5%. The self-administered measured concentrations of NO2 (GM 70 μg m−3) did not statistically differ from the NO2 concentrations measured by an expert (P > 0.35).Conclusion: The diesel exhaust exposure in tunnel construction work was low. A significant correlation between NO2 and EC was observed. This indicates that NO2 could be used as a proxy for diesel exhaust in tunnel work if diesel exhaust is the only source of NO2 and if the ratio between EC and NO2 is known and constant. Passive sampling of NO2 is much easier and cheaper to perform compared with active sampling of EC. It is possible to utilize self-administered NO2 measurements in extreme and inaccessible work environments. This study adds support to continued use of NO2 as an exposure marker in combination with EC for diesel exhaust exposure. In tunnel construction work, the variability in the diesel exhaust exposure was high both between- and within-workers.
  •  
7.
  • Hedmer, Maria, et al. (författare)
  • Exposure and Emission Measurements During Production, Purification, and Functionalization of Arc-Discharge-Produced Multi-walled Carbon Nanotubes.
  • 2014
  • Ingår i: Annals of Occupational Hygiene. - : Oxford University Press (OUP). - 1475-3162. ; 58:3, s. 355-379
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The production and use of carbon nanotubes (CNTs) is rapidly growing. With increased production, there is potential that the number of occupational exposed workers will rapidly increase. Toxicological studies on rats have shown effects in the lungs, e.g. inflammation, granuloma formation, and fibrosis after repeated inhalation exposure to some forms of multi-walled CNTs (MWCNTs). Still, when it comes to health effects, it is unknown which dose metric is most relevant. Limited exposure data for CNTs exist today and no legally enforced occupational exposure limits are yet established. The aim of this work was to quantify the occupational exposures and emissions during arc discharge production, purification, and functionalization of MWCNTs. The CNT material handled typically had a mean length <5 μm. Since most of the collected airborne CNTs did not fulfil the World Health Organization fibre dimensions (79% of the counted CNT-containing particles) and since no microscopy-based method for counting of CNTs exists, we decided to count all particle that contained CNTs. To investigate correlations between the used exposure metrics, Pearson correlation coefficient was used.
  •  
8.
  •  
9.
  •  
10.
  • Hedmer, Maria, et al. (författare)
  • Real-Time Emission and Exposure Measurements of Multi-walled Carbon Nanotubes during Production, Power Sawing, and Testing of Epoxy-Based Nanocomposites
  • 2022
  • Ingår i: Annals of Work Exposures and Health. - : Oxford University Press (OUP). - 2398-7308 .- 2398-7316. ; 66:7, s. 878-894
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of manufactured nanomaterials is increasing globally. Although multi-walled carbon nanotubes (CNTs) are used in a wide range of applications, only limited data are available on emissions and exposures during CNT composite production. No exposure data using portable aethalometers in the personal breathing zone (PBZ) to monitor occupational exposure to CNTs have yet been published. The aim of this study was to characterize emissions of and exposures to CNTs during CNT composite production, sawing, and shear testing. We also investigated whether real-time aethalometer measurements of equivalent black carbon (eBC) could be used as a proxy filter sampling of elemental carbon (EC). The presence of CNTs as surface contamination in the production facility was monitored since this could contribute to airborne exposure.Methods: During CNT composite production in an industrial setting including both chemical and manufacturing laboratories, different work tasks (WTs) were studied with a combination of directreading instruments (aethalometer, aerodynamic particle sizer, condensation particle counter) and filter-based methods. Measurements were performed to monitor concentrations in the emission zone (EZ), PBZ, and background zone. The filter samples were analysed for EC and fibre concentration of CNTs using scanning electron microscopy (SEM). Additionally, surfaces in the facility were tape sampled for monitoring of CNT contamination, and analysed with SEM.Results: Clear eBC peaks were observed in the PBZ during several WTs, most clearly during open handling of CNT powder. Power sawing emitted the highest particle number concentration in the EZ of both nanoparticles and coarse particles, but no individual airborne CNTs, agglomerates, or aggregates were detected. Airborne CNTs were identified, for example, in a filter sample collected in the PBZ of a worker during mixing of CNT epoxy. The airborne CNT particles were large agglomerates which looked like porous balls in the SEM images. Significant EC exposures were found in the inhalable fraction while all respirable fractions of EC were below detection. The highest inhalable EC concentrations were detected during the composite production. No significant correlation was found between inhalable EC and eBC, most likely due to losses of large EC containing particles in the sampling lines and inside the eBC monitor. In total, 39 tape samples were collected. Surface contamination of CNTs was detected on eight surfaces in the chemical and manufacturing laboratories, mainly in the near-field zone. Elongated CNT-like features were detected in the sawdust after sawing of CNT composite.Conclusions: Characterization of a workplace producing CNT composite showed that open handling of the CNT powder during weighing and mixing of CNT powder material generated the highest particle emissions and exposures. The portable direct-reading aethalometer provided time-resolved eBC exposure data with complementary information to time-integrated EC filter samples by linking peak exposures to specific WTs. Based on the results it was not possible to conclude that eBC is a good proxy of EC. Surface contamination of CNTs was detected on several surfaces in the near-field zone in the facility. This contamination could potentially be resuspended into the workplace air, and may cause secondary inhalation exposure.
  •  
11.
  • Hedmer, Maria, et al. (författare)
  • Validation of urinary excretion of cyclophosphamide as a biomarker of exposure by studying its renal clearance at high and low plasma concentrations in cancer patients
  • 2008
  • Ingår i: International Archives of Occupational and Environmental Health. - : Springer Science and Business Media LLC. - 1432-1246 .- 0340-0131. ; 81:3, s. 285-293
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: Cyclophosphamide (CP) is an alkylating agent classified as a human carcinogen. Health care workers handling this drug may be exposed during, e.g., preparation or administration. Cyclophosphamide is readily absorbed by inhalation and by dermal uptake. A biomarker, CP in urine, has frequently been used to assess the occupational exposure to CP, but has not been fully validated. The aim of this study was to investigate if the proportion of the CP dose that is excreted in urine (renal clearance) is constant over different plasma drug concentrations and other pharmacokinetic parameters, e.g., urine flow. METHODS: Pharmacokinetics of CP were studied in 16 breast cancer patients that were treated with postoperative adjuvant chemotherapy including CP. Plasma and urine from the patients were collected at different occasions up to 12 days after the dose. Urine was collected during 4-h periods and blood was sampled at the end of each period. Analysis of CP was performed by liquid chromatography tandem mass spectrometry. The limit of detection for CP in urine and plasma was 0.01 and 0.02 ng/ml, respectively. The precisions of the developed methods were determined to
  •  
12.
  •  
13.
  •  
14.
  • Hossain, Bakhtiar, et al. (författare)
  • Exposure to welding fumes is associated with hypomethylation of the F2RL3 gene: a cardiovascular disease marker.
  • 2015
  • Ingår i: Occupational and Environmental Medicine. - : BMJ. - 1470-7926 .- 1351-0711. ; 72:12, s. 845-851
  • Tidskriftsartikel (refereegranskat)abstract
    • Welders are at risk for cardiovascular disease. Recent studies linked tobacco smoke exposure to hypomethylation of the F2RL3 (coagulation factor II (thrombin) receptor-like 3) gene, a marker for cardiovascular disease prognosis and mortality. However, whether welding fumes cause hypomethylation of F2RL3 remains unknown.
  •  
15.
  •  
16.
  • Isaxon, Christina, et al. (författare)
  • Workplace Emissions and Exposures During Semiconductor Nanowire Production, Post-production, and Maintenance Work
  • 2020
  • Ingår i: Annals of Work Exposures and Health. - : Oxford University Press (OUP). - 2398-7308 .- 2398-7316. ; 64:1, s. 38-54
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundNanowires are a high-aspect-ratio material of increasing interest for a wide range of applications. A new and promising method to produce nanowires is by aerotaxy, where the wires are grown in a continuous stream of gas. The aerotaxy method can grow nanowires much faster than by more conventional methods. Nanowires have important properties in common with asbestos fibers, which indicate that there can be potential health effects if exposure occurs. No conclusive exposure (or emission) data from aerotaxy-production of nanowires has so far been published.MethodsDifferent work tasks during semiconductor nanowire production, post-production, and maintenance were studied. A combination of direct-reading instruments for number concentration (0.007–20 µm) and filter sampling was used to assess the emissions (a couple of centimeter from the emission sources), the exposure in the personal breathing zone (max 30 cm from nose–mouth), and the concentrations in the background zone (at least 3 m from any emission source). The filters were analyzed for metal dust composition and number concentration of nanowires. Various surfaces were sampled for nanowire contamination.ResultsThe particle concentrations in the emission zone (measured with direct-reading instruments) were elevated during cleaning of arc discharge, manual reactor cleaning, exchange of nanowire outflow filters, and sonication of substrates with nanowires. In the case of cleaning of the arc discharge and manual reactor cleaning, the emissions affected the concentrations in the personal breathing zone and were high enough to also affect the concentrations in the background. Filter analysis with electron microscopy could confirm the presence of nanowires in some of the air samples.ConclusionsOur results show that a major part of the potential for exposure occurs not during the actual manufacturing, but during the cleaning and maintenance procedures. The exposures and emissions were evaluated pre- and post-upscaling the production and showed that some work tasks (e.g. exchange of nanowire outflow filters and sonication of substrates with nanowires) increased the emissions post-upscaling.
  •  
17.
  • Kåredal, Monica, et al. (författare)
  • A quantitative LC-MS method to determine surface contamination of antineoplastic drugs by wipe sampling
  • 2022
  • Ingår i: Journal of Occupational and Environmental Hygiene. - : Informa UK Limited. - 1545-9624 .- 1545-9632. ; 19:1, s. 50-66
  • Tidskriftsartikel (refereegranskat)abstract
    • The main objective was to develop a wipe sampling test to measure surface contamination of the most frequently used antineoplastic drugs (ADs) in Swedish healthcare and, furthermore, to develop an analysis method sensitive enough to assess low levels of contamination. Two wipe sampling tests with separate sample processing methods assessing (i) cyclophosphamide (CP), ifosfamide (IF), 5-fluorouracil (5-FU), etoposide (ETO), gemcitabine (GEM) and cytarabine (CYT) (Wipe Test 1); and (ii) GEM, CYT and methotrexate (MTX) (Wipe Test 2), respectively, were developed by optimization of absorption and extraction efficiencies using different wipe tissue materials, tissue wetting solution, and extraction solvents. A fast liquid chromatography tandem mass spectrometry method was developed for simultaneous detection of the studied ADs. The limit of quantification for the method was between 0.04 to 2.4 ng/wipe sample (0.10 to 6.1 pg/cm2 for an area of 400 cm2) and at 50 ng/sample the within-day precision was between 1.3 and 15%, and the accuracy between 102 and 127%. Wipe Test 1 was applied in an assessment of cleaning efficiency of five different cleaning solutions (formic acid, water, sodium hydroxide, ethanol, and sodium dodecyl sulfate (SDS) for removal of ADs from surfaces made of stainless steel or plastic. For CP, IF, 5-FU, GEM, and CYT 92% of the AD were removed regardless of surface and cleaning solution. In conclusion, a user-friendly assessment method to measure low levels of seven ADs in the work environment was developed and validated. Assessment of the decontamination efficiency of cleaning solutions concerning removal of ADs from stainless steel showed that efficiencies differed depending on the AD with water being the least effective cleaning agent. The results suggests that a combination of different cleaning agents including detergent and a solution with an organic component would be optimal to efficiently remove the measured ADs from surfaces in the workplace.
  •  
18.
  • Kåredal, Monica, et al. (författare)
  • Pilot study : External surface contamination of gemcitabine and 5-fluorouracil on drug packaging
  • 2024
  • Ingår i: Journal of oncology pharmacy practice. - : SAGE Publications. - 1078-1552 .- 1477-092X. ; 30:1, s. 9-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Antineoplastic drugs (ADs) are commonly used pharmaceuticals for anticancer treatments. It has previously been shown that the external surface of drug vials frequently is contaminated with ADs. More than a decade ago methods to prevent occupational exposure were introduced by using plastic coverage of the glass vials or packing vials in a secondary plastic container. The aim of the pilot study was to determine contamination levels of ADs on different parts of AD packaging of two different commercially available drug vials on the Swedish market and to investigate the occurrence of cross contamination of ADs. Methods: Packagings of gemcitabine (GEM) and 5-fluorouracil (5-FU) were tested by wipe sampling. Five ADs; GEM, 5-FU, cyclophosphamide (CP), ifosfamide and etoposide were quantified using liquid chromatography mass spectrometry. Results: AD contaminations were detected in 69% and 60% of the GEM and 5-FU packaging samples. Highest levels, up to approximately 5 µg/sample, were observed on the glass vials. The protective shrink-wrap of 5-FU vials and the plastic container of GEM were contaminated with low levels of 5-FU and GEM, respectively, and furthermore the 5-FU vials with shrink-wrap were cross-contaminated with GEM. Cross-contamination of CP and GEM was detected on 5-FU vials with plastic shrink-wrap removed. Conclusions: External contamination of ADs are still present at primary drug packagings on the Swedish market. Protection of AD vials by plastic shrink-wrap or a secondary plastic container does not remove the external contamination levels completely. The presence of cross contamination of ADs on drug packagings was also observed.
  •  
19.
  • Leeman, Mats, et al. (författare)
  • Development and validation of a quantitative wipe sampling method to determine platinum contamination from antineoplastic drugs on surfaces in workplaces at Swedish hospitals
  • Ingår i: Journal of oncology pharmacy practice. - 1078-1552.
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Antineoplastic drugs (ADs) are frequently used pharmaceuticals in the healthcare, and healthcare workers can be occupationally exposed to ADs. Monitoring of surface contamination is a common way to assess occupational exposure to ADs. The objective was to develop and validate a sensitive and quantitative monitoring method to determine surface contaminations of Pt as a marker for Pt-containing ADs. The surface contaminations of Pt-containing ADs were monitored at four Swedish hospital workplaces.METHODS: An analytical method was developed based on inductively coupled plasma mass spectrometry. The wipe sampling procedure was validated regarding different surface materials. The stability of collected wipe samples was investigated. Workplace surfaces were monitored by wipe sampling to determine contaminations of Pt-containing ADs.RESULTS: A wipe sampling and analytical method with a limit of detection of 0.1 pg Pt/cm 2 was developed. Pt was detected in 67% of the wipe samples collected from four workplaces, and the concentrations ranged from <0.10 to 21100 pg/cm 2. In 4% of samples, the detected surface contaminations of Pt in three hospital wards were above proposed hygienic guidance value (HGV) of Pt. In the hospital pharmacy, 9% of the detected surface contaminations of Pt were above lowest proposed HGV. CONCLUSIONS: A user-friendly, specific, and sensitive method for determination of surface contaminations of Pt from ADs in work environments was developed and validated. A large variation of contaminations was observed between detected surface contaminations of Pt in samples collected in wards, and it likely reflects differences in amounts handled and work practices between the wards.
  •  
20.
  • Li, Huiqi, et al. (författare)
  • A Cross-Sectional Study of the Cardiovascular Effects of Welding Fumes.
  • 2015
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: Occupational exposure to particulate air pollution has been associated with an increased risk of cardiovascular disease. However, the risk to welders working today remains unclear. We aimed to elucidate the cardiovascular effects of exposure to welding fumes. METHODS: In a cross-sectional study, structured interviews and biological sampling were conducted for 101 welders and 127 controls (all non-smoking males) from southern Sweden. Personal breathing zone sampling of respirable dust was performed. Blood pressure (BP) and endothelial function (using peripheral arterial tonometry) were measured. Plasma and serum samples were collected from peripheral blood for measurement of C-reactive protein, low-density lipoprotein, homocysteine, serum amyloid A, and cytokines. RESULTS: Welders were exposed to 10-fold higher levels of particles than controls. Welders had significantly higher BP compared to controls, an average of 5 mm Hg higher systolic and diastolic BP (P≤0.001). IL-8 was 3.4 ng/L higher in welders (P=0.010). Years working as a welder were significantly associated with increased BP (β=0.35, 95%CI 0.13 - 0.58, P=0.0024 for systolic BP; β=0.32, 95%CI 0.16 - 0.48, P<0.001 for diastolic BP, adjusted for BMI) but exposure to respirable dust was not associated with BP. No clear associations occurred between welding and endothelial function, or other effect markers. CONCLUSIONS: A modest increase in BP was found among welders compared to controls suggesting that low-to-moderate exposure to welding fumes remains a risk factor for cardiovascular disease.
  •  
21.
  • Li, Huiqi, et al. (författare)
  • Oxidative stress, telomere shortening, and DNA methylation in relation to low-to-moderate occupational exposure to welding fumes.
  • 2015
  • Ingår i: Environmental and Molecular Mutagenesis. - : Wiley. - 1098-2280 .- 0893-6692. ; 56:8, s. 684-693
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence suggests that exposure to welding fumes is a risk factor for lung cancer. We examined relationships between low-to-moderate occupational exposure to particles from welding fumes and cancer-related biomarkers for oxidative stress, changes in telomere length, and alterations in DNA methylation. We enrolled 101 welders and 127 controls (all currently nonsmoking men) from southern Sweden. We performed personal sampling of respirable dust and measured 8-oxodG concentrations in urine using a simplified liquid chromatography tandem mass spectrometry method. Telomere length in peripheral blood was measured by quantitative polymerase chain reaction. Methylation status of 10 tumor suppressor genes was determined by methylation-sensitive high-resolution melting analysis. All analyses were adjusted for age, body mass index, previous smoking, passive smoking, current residence, and wood burning stove/boiler at home. Welders were exposed to respirable dust at 1.2 mg/m(3) (standard deviation, 3.3 mg/m(3) ; range, 0.1-19.3), whereas control exposures did not exceed 0.1 mg/m(3) (P < 0.001). Welders and controls did not differ in 8-oxodG levels (β = 1.2, P = 0.17) or relative telomere length (β = -0.053, P = 0.083) in adjusted models. Welders showed higher probability of adenomatous polyposis coli (APC) methylation in the unadjusted model (odds ratio = 14, P = 0.014), but this was not significant in the fully adjusted model (P = 0.052). Every working year as a welder was associated with 0.0066 units shorter telomeres (95% confidence interval -0.013 to -0.00053, P = 0.033). Although there were no clear associations between concentrations of respirable dust and the biomarkers, there were modest signs of associations between oxidative stress, telomere alterations, DNA methylation, and occupational exposure to low-to-moderate levels of particles. Environ. Mol. Mutagen., 2015. © 2015 Wiley Periodicals, Inc.
  •  
22.
  • Lovén, Karin, et al. (författare)
  • Emissions and exposures of graphene nanomaterials, titanium dioxide nanofibers, and nanoparticles during down-stream industrial handling
  • 2021
  • Ingår i: Journal of Exposure Science & Environmental Epidemiology. - : Springer Science and Business Media LLC. - 1559-064X .- 1559-0631. ; 31:4, s. 736-752
  • Tidskriftsartikel (refereegranskat)abstract
    • Today, engineered nanomaterials are frequently used. Nanosized titanium dioxide (TiO2) has been extensively used for many years and graphene is one type of emerging nanomaterial. Occupational airborne exposures to engineered nanomaterials are important to ensure safe workplaces and to extend the information needed for complete risk assessments. The main aim of this study was to characterize workplace emissions and exposure of graphene nanoplatelets, graphene oxide, TiO2 nanofibers (NFs) and nanoparticles (NPs) during down-stream industrial handling. Surface contaminations were also investigated to assess the potential for secondary inhalation exposures. In addition, a range of different sampling and aerosol monitoring methods were used and evaluated. The results showed that powder handling, regardless of handling graphene nanoplatelets, graphene oxide, TiO2 NFs, or NPs, contributes to the highest particle emissions and exposures. However, the exposure levels were below suggested occupational exposure limits. It was also shown that a range of different methods can be used to selectively detect and quantify nanomaterials both in the air and as surface contaminations. However, to be able to make an accurate determination of which nanomaterial that has been emitted a combination of different methods, both offline and online, must be used.
  •  
23.
  • Lovén, Karin, et al. (författare)
  • Size-resolved characterization of particles >10 nm emitted to air during metal recycling
  • 2023
  • Ingår i: Environment International. - : Elsevier Ltd. - 0160-4120 .- 1873-6750. ; 174
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In the strive towards a circular economy, metal waste recycling is a growing industry. During the recycling process, particulate matter containing toxic and allergenic metals will be emitted to the air causing unintentional exposure to humans and environment. Objective: In this study detailed characterization of particle emissions and workplace exposures were performed, covering the full size range from 10 nm to 10 µm, during recycling of three different material flows: Waste of electrical and electronic equipment (WEEE), metal scrap, and cables. Methods: Both direct-reading instruments (minute resolution), and time-integrated filter measurements for gravimetric and chemical analysis were used. Additionally, optical sensors were applied and evaluated for long-term online monitoring of air quality in industrial settings. Results: The highest concentrations, in all particle sizes, and with respect both to particle mass and number, were measured in the WEEE flow, followed by the metal scrap flow. The number fraction of nanoparticles was high for all material flows (0.66–0.86). The most abundant metals were Fe, Al, Zn, Pb and Cu. Other elements of toxicological interest were Mn, Ba and Co. Significance: The large fraction of nanoparticles, and the fact that their chemical composition deviate from that of the coarse particles, raises questions that needs to be further addressed including toxicological implications, both for humans and for the environment. © 2023 The Authors
  •  
24.
  • Ludvigsson, Linus, et al. (författare)
  • Carbon Nanotube Emissions from Arc Discharge Production: Classification of Particle Types with Electron Microscopy and Comparison with Direct Reading Techniques.
  • 2016
  • Ingår i: Annals of Occupational Hygiene. - : Oxford University Press (OUP). - 1475-3162 .- 0003-4878. ; 60:4, s. 493-512
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: An increased production and use of carbon nanotubes (CNTs) is occurring worldwide. In parallel, a growing concern is emerging on the adverse effects the unintentional inhalation of CNTs can have on humans. There is currently a debate regarding which exposure metrics and measurement strategies are the most relevant to investigate workplace exposures to CNTs. This study investigated workplace CNT emissions using a combination of time-integrated filter sampling for scanning electron microscopy (SEM) and direct reading aerosol instruments (DRIs). Material and Methods: Field measurements were performed during small-scale manufacturing of multiwalled carbon nanotubes using the arc discharge technique. Measurements with highly time- and size-resolved DRI techniques were carried out both in the emission and background (far-field) zones. Novel classifications and counting criteria were set up for the SEM method. Three classes of CNT-containing particles were defined: type 1: particles with aspect ratio length:width >3:1 (fibrous particles); type 2: particles without fibre characteristics but with high CNT content; and type 3: particles with visible embedded CNTs. Results: Offline sampling using SEM showed emissions of CNT-containing particles in 5 out of 11 work tasks. The particles were classified into the three classes, of which type 1, fibrous CNT particles contributed 37%. The concentration of all CNT-containing particles and the occurrence of the particle classes varied strongly between work tasks. Based on the emission measurements, it was assessed that more than 85% of the exposure originated from open handling of CNT powder during the Sieving, mechanical work-up, and packaging work task. The DRI measurements provided complementary information, which combined with SEM provided information on: (i) the background adjusted emission concentration from each work task in different particle size ranges, (ii) identification of the key procedures in each work task that lead to emission peaks, (iii) identification of emission events that affect the background, thereby leading to far-field exposure risks for workers other than the operator of the work task, and (iv) the fraction of particles emitted from each source that contains CNTs. Conclusions: There is an urgent need for a standardized/harmonized method for electron microscopy (EM) analysis of CNTs. The SEM method developed in this study can form the basis for such a harmonized protocol for the counting of CNTs. The size-resolved DRI techniques are commonly not specific enough to selective analysis of CNT-containing particles and thus cannot yet replace offline time-integrated filter sampling followed by SEM. A combination of EM and DRI techniques offers the most complete characterization of workplace emissions of CNTs today.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 59
Typ av publikation
tidskriftsartikel (30)
konferensbidrag (25)
rapport (3)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (54)
övrigt vetenskapligt/konstnärligt (4)
populärvet., debatt m.m. (1)
Författare/redaktör
Hedmer, Maria (59)
Tinnerberg, Håkan (25)
Pagels, Joakim (24)
Isaxon, Christina (23)
Rissler, Jenny (16)
Bohgard, Mats (14)
visa fler...
Gudmundsson, Anders (11)
Albin, Maria (11)
Jönsson, Bo A (9)
Eriksson, Axel (8)
Kåredal, Monica (8)
Deppert, Knut (7)
Broberg, Karin (7)
Lovén, Karin (5)
Li, Huiqi (5)
Gustavsson, Per (4)
Broberg Palmgren, Ka ... (3)
Taj, Tahir (3)
Lundh, Thomas (3)
Höglund, Peter (3)
Tinnerberg, Håkan, 1 ... (3)
Martinsson, Johan (2)
Lindh, Christian (2)
Wierzbicka, Aneta (2)
Hossain, Bakhtiar (2)
Strandberg, Bo (2)
Petersson Sjögren, M ... (1)
Löndahl, Jakob (1)
Wollmer, Per (1)
Stockfelt, Leo, 1981 (1)
Ahlberg, Erik (1)
Abrahamsson, Camilla (1)
Suchorzewski, Jan (1)
Prieto Rábade, Migue ... (1)
Arun Chaudhari, Ojas (1)
Bergdahl, Ingvar A. (1)
Eksborg, S (1)
Nilsson, Leif (1)
Björk, Jonas (1)
Skerfving, Staffan (1)
Sivakumar, Sudhakar (1)
Rylander, Lars (1)
Jacobsson, Helene (1)
Axmon, Anna (1)
Nielsen, Jörn (1)
Kanje, Martin (1)
Westberg, Håkan, 194 ... (1)
Krais, Annette M (1)
Thuresson, Sara (1)
Xu, YiYi (1)
visa färre...
Lärosäte
Lunds universitet (59)
Karolinska Institutet (10)
Göteborgs universitet (3)
RISE (3)
Umeå universitet (1)
Örebro universitet (1)
Språk
Engelska (53)
Svenska (6)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (48)
Teknik (17)
Naturvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy