SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Helfter C.) "

Search: WFRF:(Helfter C.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Jansen, Joachim, 1989-, et al. (author)
  • Monitoring of carbon-water fluxes at Eurasian meteorological stations using random forest and remote sensing
  • 2023
  • In: Scientific Data. - : Springer Nature. - 2052-4463. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Simulating the carbon-water fluxes at more widely distributed meteorological stations based on the sparsely and unevenly distributed eddy covariance flux stations is needed to accurately understand the carbon-water cycle of terrestrial ecosystems. We established a new framework consisting of machine learning, determination coefficient (R2), Euclidean distance, and remote sensing (RS), to simulate the daily net ecosystem carbon dioxide exchange (NEE) and water flux (WF) of the Eurasian meteorological stations using a random forest model or/and RS. The daily NEE and WF datasets with RS-based information (NEE-RS and WF-RS) for 3774 and 4427 meteorological stations during 2002-2020 were produced, respectively. And the daily NEE and WF datasets without RS-based information (NEE-WRS and WF-WRS) for 4667 and 6763 meteorological stations during 1983-2018 were generated, respectively. For each meteorological station, the carbon-water fluxes meet accuracy requirements and have quasi-observational properties. These four carbon-water flux datasets have great potential to improve the assessments of the ecosystem carbon-water dynamics.
  •  
2.
  • Peltola, O., et al. (author)
  • Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment
  • 2014
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 11:12, s. 3163-3186
  • Journal article (peer-reviewed)abstract
    • The performance of eight fast-response methane (CH4) gas analysers suitable for eddy covariance flux measurements were tested at a grassland site near the Cabauw tall tower (Netherlands) during June 2012. The instruments were positioned close to each other in order to minimise the effect of varying turbulent conditions. The moderate CH4 fluxes observed at the location, of the order of 25 nmol m(-2) s(-1), provided a suitable signal for testing the instruments' performance. Generally, all analysers tested were able to quantify the concentration fluctuations at the frequency range relevant for turbulent exchange and were able to deliver high-quality data. The tested cavity ringdown spectrometer (CRDS) instruments from Picarro, models G2311-f and G1301-f, were superior to other CH4 analysers with respect to instrumental noise. As an open-path instrument susceptible to the effects of rain, the LI-COR LI-7700 achieved lower data coverage and also required larger density corrections; however, the system is especially useful for remote sites that are restricted in power availability. In this study the open-path LI-7700 results were compromised due to a data acquisition problem in our data-logging setup. Some of the older closed-path analysers tested do not measure H2O concentrations alongside CH4 (i.e. FMA1 and DLT-100 by Los Gatos Research) and this complicates data processing since the required corrections for dilution and spectroscopic interactions have to be based on external information. To overcome this issue, we used H2O mole fractions measured by other gas analysers, adjusted them with different methods and then applied them to correct the CH4 fluxes. Following this procedure we estimated a bias of the order of 0.1 g (CH4) m(-2) (8% of the measured mean flux) in the processed and corrected CH4 fluxes on a monthly scale due to missing H2O concentration measurements. Finally, cumulative CH4 fluxes over 14 days from three closed-path gas analysers, G2311-f (Picarro Inc.), FGGA (Los Gatos Research) and FMA2 (Los Gatos Research), which were measuring H2O concentrations in addition to CH4, agreed within 3% (355-367 mg (CH4) m(-2)) and were not clearly different from each other, whereas the other instruments derived total fluxes which showed small but distinct differences (+/- 10 %, 330-399 mg (CH4) m(-2)).
  •  
3.
  • Peltola, O., et al. (author)
  • Studying the spatial variability of methane flux with five eddy covariance towers of varying height
  • 2015
  • In: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 214, s. 456-472
  • Journal article (peer-reviewed)abstract
    • In this study, the spatial representativeness of eddy covariance (EC) methane (CH4) measurements was examined by comparing parallel CH4 fluxes from three short (6 m) towers separated by a few kilometres and from two higher levels (20 m and 60 m) at one location. The measurement campaign was held on an intensively managed grassland on peat soil in the Netherlands. The land use and land cover types are to a large degree homogeneous in the area. The CH4 fluxes exhibited significant variability between the sites on 30-min scale. The spatial coefficient of variation (CVspa) between the three short towers was 56% and it was of similar magnitude as the temporal variability, unlike for the other fluxes (friction velocity, sensible heat flux) for which the temporal variability was considerably larger than the spatial variability. The CVspa decreased with temporal averaging, although less than what could be expected for a purely random process (1/root N), and it was 14% for 26-day means of CH4 flux. This reflects the underlying heterogeneity of CH4 flux in the studied landscape at spatial scales ranging from 1 ha (flux footprint) to 10 km(2) (area bounded by the short towers). This heterogeneity should be taken into account when interpreting and comparing EC measurements. On an annual scale, the flux spatial variability contributed up to 50% of the uncertainty in CH4 emissions. It was further tested whether EC flux measurements at higher levels could be used to acquire a more accurate estimate of the spatially integrated CH4 emissions. Contrarily to what was expected, flux intensity was found to both increase and decrease depending on measurement height. Using footprint modelling, 56% of the variation between 6 m and 60 m CH4 fluxes was attributed to emissions from local anthropogenic hotspots (farms). Furthermore, morning hours proved to be demanding for the tall tower EC where fluxes at 60 m were up to four-fold those at lower heights. These differences were connected with the onset of convective mixing during the morning period. (C) 2015 The Authors. Published by Elsevier B.V.
  •  
4.
  • Yi, Chuixiang, et al. (author)
  • Climate control of terrestrial carbon exchange across biomes and continents
  • 2010
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 5:3
  • Journal article (peer-reviewed)abstract
    • Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid-and high-latitudes, (2) a strong function of dryness at mid-and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 degrees N). The sensitivity of NEE to mean annual temperature breaks down at similar to 16 degrees C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.
  •  
5.
  • Abdalla, M., et al. (author)
  • Simulation of CO2 and Attribution Analysis at Six European Peatland Sites Using the ECOSSE Model
  • 2014
  • In: Water, Air and Soil Pollution. - : Springer Science and Business Media LLC. - 1573-2932 .- 0049-6979. ; 225:11, s. 2182-2182
  • Journal article (peer-reviewed)abstract
    • In this study, we simulated heterotrophic CO2 (Rh) fluxes at six European peatland sites using the ECOSSE model and compared them to estimates of Rh made from eddy covariance (EC) measurements. The sites are spread over four countries with different climates, vegetation and management. Annual Rh from the different sites ranged from 110 to 540 g C m(-2). The maximum annual Rh occurred when the water table (WT) level was between -10 and -25 cm and the air temperature was above 6.2 degrees C. The model successfully simulated seasonal trends for the majority of the sites. Regression relationships (r(2)) between the EC-derived and simulated Rh ranged from 0.28 to 0.76, and the root mean square error and relative error were small, revealing an acceptable fit. The overall relative deviation value between annual EC-derived and simulated Rh was small (-1 %) and model efficiency ranges across sites from -0.25 to +0.41. Sensitivity analysis highlighted that increasing temperature, decreasing precipitation and lowering WT depth could significantly increase Rh from soils. Thus, management which lowers the WT could significantly increase anthropogenic CO2, so from a carbon emissions perspective, it should be avoided. The results presented here demonstrate a robust basis for further application of the ECOSSE model to assess the impacts of future land management interventions on peatland carbon emissions and to help guide best practice land management decisions.
  •  
6.
  • Helbig, M., et al. (author)
  • Warming response of peatland CO2 sink is sensitive to seasonality in warming trends
  • 2022
  • In: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-6798 .- 1758-678X. ; 12:8, s. 743-749
  • Journal article (peer-reviewed)abstract
    • Peatlands have acted as net CO2 sinks over millennia, exerting a global climate cooling effect. Rapid warming at northern latitudes, where peatlands are abundant, can disturb their CO2 sink function. Here we show that sensitivity of peatland net CO2 exchange to warming changes in sign and magnitude across seasons, resulting in complex net CO2 sink responses. We use multiannual net CO2 exchange observations from 20 northern peatlands to show that warmer early summers are linked to increased net CO2 uptake, while warmer late summers lead to decreased net CO2 uptake. Thus, net CO2 sinks of peatlands in regions experiencing early summer warming, such as central Siberia, are more likely to persist under warmer climate conditions than are those in other regions. Our results will be useful to improve the design of future warming experiments and to better interpret large-scale trends in peatland net CO2 uptake over the coming few decades.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view