SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Helgadottir Hafdis) "

Sökning: WFRF:(Helgadottir Hafdis)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gudbjartsson, Daniel F., et al. (författare)
  • Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 41:3, s. 342-347
  • Tidskriftsartikel (refereegranskat)abstract
    • Eosinophils are pleiotropic multifunctional leukocytes involved in initiation and propagation of inflammatory responses and thus have important roles in the pathogenesis of inflammatory diseases. Here we describe a genome-wide association scan for sequence variants affecting eosinophil counts in blood of 9,392 Icelanders. The most significant SNPs were studied further in 12,118 Europeans and 5,212 East Asians. SNPs at 2q12 (rs1420101), 2q13 (rs12619285), 3q21 (rs4857855), 5q31 (rs4143832) and 12q24 (rs3184504) reached genome-wide significance (P = 5.3 x 10(-14), 5.4 x 10(-10), 8.6 x 10(-17), 1.2 x 10(-10) and 6.5 x 10(-19), respectively). A SNP at IL1RL1 associated with asthma (P = 5.5 x 10(-12)) in a collection of ten different populations (7,996 cases and 44,890 controls). SNPs at WDR36, IL33 and MYB that showed suggestive association with eosinophil counts were also associated with atopic asthma (P = 4.2 x 10(-6), 2.2 x 10(-5) and 2.4 x 10(-4), respectively). We also found that a nonsynonymous SNP at 12q24, in SH2B3, associated significantly (P = 8.6 x 10(-8)) with myocardial infarction in six different populations (6,650 cases and 40,621 controls).
  •  
2.
  • Barnekow, Elin, et al. (författare)
  • A Swedish Genome-Wide Haplotype Association Analysis Identifies a Novel Breast Cancer Susceptibility Locus in 8p21.2 and Characterizes Three Loci on Chromosomes 10, 11 and 16
  • 2022
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 14:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The heritability of breast cancer is partly explained but much of the genetic contribution remains to be identified. Haplotypes are often used as markers of ethnicity as they are preserved through generations. We have previously demonstrated that haplotype analysis, in addition to standard SNP association studies, could give novel and more detailed information on genetic cancer susceptibility.Methods: In order to examine the association of a SNP or a haplotype to breast cancer risk, we performed a genome wide haplotype association study, using sliding window analysis of window sizes 1-25 and 50 SNPs, in 3200 Swedish breast cancer cases and 5021 controls.Results: We identified a novel breast cancer susceptibility locus in 8p21.1 (OR 2.08; p 3.92 x 10(-8)), confirmed three known loci in 10q26.13, 11q13.3, 16q12.1-2 and further identified novel subloci within these three loci. Altogether 76 risk SNPs, 3302 risk haplotypes of window size 2-25 and 113 risk haplotypes of window size 50 at p < 5 x 10(-8) on chromosomes 8, 10, 11 and 16 were identified. In the known loci haplotype analysis reached an OR of 1.48 in overall breast cancer and in familial cases OR 1.68.Conclusions: Analyzing haplotypes, rather than single variants, could detect novel susceptibility loci even in small study populations but the method requires a fairly homogenous study population.
  •  
3.
  • Evangelou, Evangelos, et al. (författare)
  • A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip
  • 2014
  • Ingår i: Annals of the Rheumatic Diseases. - : BMJ. - 1468-2060 .- 0003-4967. ; 73:12, s. 2130-2136
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives Osteoarthritis (OA) is the most common form of arthritis with a clear genetic component. To identify novel loci associated with hip OA we performed a meta-analysis of genome-wide association studies (GWAS) on European subjects. Methods We performed a two-stage meta-analysis on more than 78 000 participants. In stage 1, we synthesised data from eight GWAS whereas data from 10 centres were used for 'in silico' or 'de novo' replication. Besides the main analysis, a stratified by sex analysis was performed to detect possible sex-specific signals. Meta-analysis was performed using inverse-variance fixed effects models. A random effects approach was also used. Results We accumulated 11 277 cases of radiographic and symptomatic hip OA. We prioritised eight single nucleotide polymorphism (SNPs) for follow-up in the discovery stage (4349 OA cases); five from the combined analysis, two male specific and one female specific. One locus, at 20q13, represented by rs6094710 (minor allele frequency (MAF) 4%) near the NCOA3 (nuclear receptor coactivator 3) gene, reached genome-wide significance level with p=7.9x10(-9) and OR=1.28 (95% CI 1.18 to 1.39) in the combined analysis of discovery (p= 5.6x10(-8)) and follow-up studies (p=7.3x10(-4)). We showed that this gene is expressed in articular cartilage and its expression was significantly reduced in OA-affected cartilage. Moreover, two loci remained suggestive associated; rs5009270 at 7q31 (MAF 30%, p=9.9x10(-7), OR=1.10) and rs3757837 at 7p13 (MAF 6%, p=2.2x10(-6), OR=1.27 in male specific analysis). Conclusions Novel genetic loci for hip OA were found in this meta-analysis of GWAS.
  •  
4.
  • Evangelou, Evangelos, et al. (författare)
  • Meta-analysis of genome-wide association studies confirms a susceptibility locus for knee osteoarthritis on chromosome 7q22
  • 2011
  • Ingår i: Annals of the Rheumatic Diseases. - : BMJ. - 1468-2060 .- 0003-4967. ; 70:2, s. 349-355
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives Osteoarthritis (OA) is the most prevalent form of arthritis and accounts for substantial morbidity and disability, particularly in older people. It is characterised by changes in joint structure, including degeneration of the articular cartilage, and its aetiology is multifactorial with a strong postulated genetic component. Methods A meta-analysis was performed of four genome-wide association (GWA) studies of 2371 cases of knee OA and 35 909 controls in Caucasian populations. Replication of the top hits was attempted with data from 10 additional replication datasets. Results With a cumulative sample size of 6709 cases and 44 439 controls, one genome-wide significant locus was identified on chromosome 7q22 for knee OA (rs4730250, p = 9.2 x 10(-9)), thereby confirming its role as a susceptibility locus for OA. Conclusion The associated signal is located within a large (500 kb) linkage disequilibrium block that contains six genes: PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, beta), HPB1 (HMG-box transcription factor 1), COG5 (component of oligomeric golgi complex 5), GPR22 (G protein-coupled receptor 22), DUS4L (dihydrouridine synthase 4-like) and BCAP29 (B cell receptor-associated protein 29). Gene expression analyses of the (six) genes in primary cells derived from different joint tissues confirmed expression of all the genes in the joint environment.
  •  
5.
  • Franco, Irene, et al. (författare)
  • Somatic mutagenesis in satellite cells associates with human skeletal muscle aging
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Human aging is associated with a decline in skeletal muscle (SkM) function and a reduction in the number and activity of satellite cells (SCs), the resident stem cells. To study the connection between SC aging and muscle impairment, we analyze the whole genome of single SC clones of the leg muscle vastus lateralis from healthy individuals of different ages (21-78 years). We find an accumulation rate of 13 somatic mutations per genome per year, consistent with proliferation of SCs in the healthy adult muscle. SkM-expressed genes are protected from mutations, but aging results in an increase in mutations in exons and promoters, targeting genes involved in SC activity and muscle function. In agreement with SC mutations affecting the whole tissue, we detect a missense mutation in a SC propagating to the muscle. Our results suggest somatic mutagenesis in SCs as a driving force in the age-related decline of SkM function.
  •  
6.
  • Franco, Irene, et al. (författare)
  • Whole genome DNA sequencing provides an atlas of somatic mutagenesis in healthy human cells and identifies a tumor-prone cell type
  • 2019
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The lifelong accumulation of somatic mutations underlies age-related phenotypes and cancer. Mutagenic forces are thought to shape the genome of aging cells in a tissue-specific way. Whole genome analyses of somatic mutation patterns, based on both types and genomic distribution of variants, can shed light on specific processes active in different human tissues and their effect on the transition to cancer. Results: To analyze somatic mutation patterns, we compile a comprehensive genetic atlas of somatic mutations in healthy human cells. High-confidence variants are obtained from newly generated and publicly available whole genome DNA sequencing data from single non-cancer cells, clonally expanded in vitro. To enable a well-controlled comparison of different cell types, we obtain single genome data (92% mean coverage) from multi-organ biopsies from the same donors. These data show multiple cell types that are protected from mutagens and display a stereotyped mutation profile, despite their origin from different tissues. Conversely, the same tissue harbors cells with distinct mutation profiles associated to different differentiation states. Analyses of mutation rate in the coding and non-coding portions of the genome identify a cell type bearing a unique mutation pattern characterized by mutation enrichment in active chromatin, regulatory, and transcribed regions. Conclusions: Our analysis of normal cells from healthy donors identifies a somatic mutation landscape that enhances the risk of tumor transformation in a specific cell population from the kidney proximal tubule. This unique pattern is characterized by high rate of mutation accumulation during adult life and specific targeting of expressed genes and regulatory regions.
  •  
7.
  • Hammar, Björn, et al. (författare)
  • A Novel Type of Autosomal Dominant Episodic Nystagmus Segregating with a Variant in the FRMD5 Gene
  • Ingår i: Neuro-Ophthalmology. - 0165-8107.
  • Tidskriftsartikel (refereegranskat)abstract
    • To describe the phenotype of a novel form of autosomal dominant episodic nystagmus and to identify the potential genetic aetiology. We identified several individuals in a large Swedish family affected by episodic nystagmus. In total, 39 family members from five generations were invited to participate in the study, of which 17 were included (12 affected and 5 unaffected). The phenotype of the nystagmus was described based on data collected from family members through questionnaires, interviews, clinical examinations and from video recordings of ongoing episodes of nystagmus. Whole genome sequencing (WGS) and further Sanger sequencing for segregation of the identified candidate variants was performed in eight participants (six affected and two unaffected). The 12 affected participants showed a phenotype with episodic nystagmus of early onset. A vertical jerk nystagmus with variable amplitude and frequency was characterized in the analysed video material. No other eye pathology or other disease that could explain the episodic nystagmus was identified among the family participants. Genetic analysis identified a missense variant (p.Ser375Phe) in the gene FRMD5, which segregated with the disease in the eight individuals analysed, from three generations. We describe a novel autosomal dominant form of early onset episodic nystagmus and suggest the FRMD5 gene as a strong candidate gene for this disorder.
  •  
8.
  • Helgadottir, Hafdis, et al. (författare)
  • Somatic mutation that affects transcription factor binding upstream of CD55 in the temporal cortex of a late-onset Alzheimer disease patient
  • 2019
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 28:16, s. 2675-2685
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. Familial cases suggest genetic components; however, monogenetic causes are few, and the vast majority of incidences have unknown cause. Sequencing efforts have focused on germline mutations, but improved technology has opened up for studies on somatic mutations in affected brain tissue samples. Here we use ultra-deep sequencing on brain and blood from early-onset AD (EOAD) and late-onset AD (LOAD) patients and non-AD individuals (n = 16). In total, 2.86 Mb of genomic regions, previously associated with AD, were targeted included 28 genes and upstream and downstream regulatory regions. Tailored downstream bioinformatics filtering identified 11 somatic single nucleotide variants in the temporal cortex in AD patients and none in the controls. One variant was validated to be present at 0.4% allele frequency in temporal cortex of a LOAD patient. This variant was predicted to affect transcription factor binding sites upstream of the CD55 gene, contributing to AD pathogenesis by affecting the complement system. Our results suggest that future studies targeting larger portions of the genome for somatic mutation analysis are important to obtain an increased understanding for the molecular basis of both EOAD and LOAD.
  •  
9.
  • Helgadottir, Hafdis Thorunn (författare)
  • Somatic mutations in healthy cells and age-associated diseases
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Aging is a complex process that affects all living organisms. As we age, the biological functions are affected, resulting in a decline of the tissue and possibly age-related diseases. Several environmental and genetic factors have been suggested to contribute to aging. Among these factors, a progressive loss of genome integrity, caused by the occurrence of somatic mutations, is proposed as a cause of deterioration of cellular functions. The aim of this thesis was to analyze the effect of somatic mutations in healthy cells and analyze the contribution of somatic mutations to age-related diseases. In paper I, we showed that satellite cells, stem cells of the skeletal muscle, accumulate 13 somatic mutations per genome per year during adult life. Although genes expressed in the skeletal muscle were protected from mutations by the DNA repair machinery, we observed that this protection was less efficient at increased age, resulting in higher mutation load in the exons of old compared to young satellite cells. A somatic mutation identified in a satellite cell was also detected in a small percentage of the cells of the muscle biopsy, suggesting that somatic mutations propagate from satellite cells to the differentiated muscle during adult age and might contribute to its age-related decline. In paper II, we created a genetic atlas of somatic mutations in healthy cells from different tissues based on newly generated and publicly-available sequencing data. In contrast to the current view of a tissue-specific mutational profile, several cell types showed the same mutational profile despite coming from different tissues. Furthermore, two distinct cell types from the same tissue showed different mutational profiles and rates of mutation accumulation. Thanks to these data, we identified multiple factors influencing mutagen exposure and consequent mutational profiles. These factors include the cell´s localization within the tissue, the degree of differentiation and the presence of a protective stem cell niche. In addition, we identified an epithelial cell of the kidney that shows a unique distribution of mutations, characterized by mutation enrichment in highly transcribed genes. This pattern increases the chances of mutating a cancer-driver gene and is in agreement with an increased predisposition to cancer in this cell type. Finally, our analyses provide evidence of a decline of DNA-repair with aging. In paper III, we identified somatic mutations in the brain of Alzheimer´s disease (AD) patients. Using ultra-deep sequencing and tailored bioinformatics analysis, we could detect low-frequency variants in bulk tissue. In total, 2.86 Mb of candidate genes and AD-linked genomic regions were included in the study, and 11 somatic single nucleotide variants (SNVs) were identified in AD brains, but none in non-AD brains. One variant was validated and predicted to affect transcription factor binding sites upstream of the CD55 gene, possibly contributing to AD through the regulation of the complement system. In paper IV, we showed that patients with end-stage chronic kidney disease (CKD) express progerin within their arterial media, the same mutated form of the protein lamin A found in premature aging patients. Importantly, we could identify the mutation that causes progeria, the LMNA c.1824C>T, in DNA extracted from the arteries. In total, we could identify the progerin protein or the mutation in 34 of the 40 CKD patients. DNA damage and increased proliferation were detected in the CKD patients, indicating extensive vascular regeneration. Our result suggests that progenitor cells carrying LMNA c.1824C>T contribute to the vascular pathology and thereby to the disease progression observed in CKD patients. In conclusion, the work presented in this thesis provides a new understanding of the contribution of mutation accumulation in healthy cells with possible implications for aging and age-associated diseases.
  •  
10.
  • Lindstrand, Anna, et al. (författare)
  • Genome sequencing is a sensitive first-line test to diagnose individuals with intellectual disability
  • 2022
  • Ingår i: Genetics in Medicine. - : ELSEVIER SCIENCE INC. - 1098-3600 .- 1530-0366. ; 24:11, s. 2296-2307
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Individuals with intellectual disability (ID) and/or neurodevelopment disorders (NDDs) are currently investigated with several different approaches in clinical genetic diagnostics. Methods: We compared the results from 3 diagnostic pipelines in patients with ID/NDD: genome sequencing (GS) first (N = 100), GS as a secondary test (N = 129), or chromosomal microarray (CMA) with or without FMR1 analysis (N = 421). Results: The diagnostic yield was 35% (GS -first), 26% (GS as a secondary test), and 11% (CMA/FMR1). Notably, the age of diagnosis was delayed by 1 year when GS was performed as a secondary test and the cost per diagnosed individual was 36% lower with GS first than with CMA/FMR1. Furthermore, 91% of those with a negative result after CMA/FMR1 analysis (338 individuals) have not yet been referred for additional genetic testing and remain undiagnosed. Conclusion: Our findings strongly suggest that genome analysis outperforms other testing strategies and should replace traditional CMA and FMR1 analysis as a first-line genetic test in individuals with ID/NDD. GS is a sensitive, time-and cost-effective method that results in a confirmed molecular diagnosis in 35% of all referred patients. (c) 2022 The Authors. Published by Elsevier Inc. on behalf of American College of Medical Genetics and Genomics. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
11.
  • Liu, Wen, et al. (författare)
  • Colorectal cancer risk susceptibility loci in a Swedish population
  • 2022
  • Ingår i: Molecular Carcinogenesis. - : Wiley. - 0899-1987 .- 1098-2744. ; 61:3, s. 288-300
  • Tidskriftsartikel (refereegranskat)abstract
    • To search for colorectal cancer (CRC) risk loci, Swedish samples were used for a genome-wide haplotype analysis. A logistic regression model was employed in 2663 CRC cases and 1642 controls in the discovery analysis. Three analyses were done, on all, familial-, and nonfamilial CRC samples and only results with odds ratio (OR) > 1 were analyzed. single nucleotide polymorphism (SNP) analysis did not generate any statistically significant results. Haplotype analysis suggested novel loci, on chromosome 2q36.1 (OR = 1.71, p value = 5.6924 × 10-8 ) in all CRC samples, chromosome 1q43 (OR = 4.04 p value = 3.24 × 10-8 ) in familial CRC samples, and two hits in nonfamilial CRC samples, chromosomes 2q36.1 (OR = 1.71 p value = 5.69 × 10-8 ) and 3p24.3 (OR = 1.62 p value = 6.21 × 10-9 ). Moreover, one locus on chromosome 20q13.33 was suggested in analyses of all samples, and five more novel loci were suggested on chromosomes 10q25.3, 15q,22.31, 17p11.2, 1p34.2, and 3q24. The haplotypes from the analysis of all samples were replicated in a second study of CRC cases and controls from the same part of Sweden. In summary, using haplotype analysis in Swedish CRC samples, the best hits were novel loci and the locus on chromosomes 2q36.1 and 20q13.33 suggested in the analysis of all samples were confirmed in a second cohort. The ORs were often higher than ORs from published genome-wide association study (GWAS). The study suggested it was possible that a risk locus could involve more than one gene, and that haplotypes could give information on the gene or genes possibly involved in the risk at specific locus.
  •  
12.
  • Rafnar, Thorunn, et al. (författare)
  • European genome-wide association study identifies SLC14A1 as a new urinary bladder cancer susceptibility gene.
  • 2011
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 20:21, s. 4268-81
  • Tidskriftsartikel (refereegranskat)abstract
    • Three genome-wide association studies in Europe and the USA have reported eight urinary bladder cancer (UBC) susceptibility loci. Using extended case and control series and 1000 Genomes imputations of 5 340 737 single-nucleotide polymorphisms (SNPs), we searched for additional loci in the European GWAS. The discovery sample set consisted of 1631 cases and 3822 controls from the Netherlands and 603 cases and 37 781 controls from Iceland. For follow-up, we used 3790 cases and 7507 controls from 13 sample sets of European and Iranian ancestry. Based on the discovery analysis, we followed up signals in the urea transporter (UT) gene SLC14A. The strongest signal at this locus was represented by a SNP in intron 3, rs17674580, that reached genome-wide significance in the overall analysis of the discovery and follow-up groups: odds ratio = 1.17, P = 7.6 × 10(-11). SLC14A1 codes for UTs that define the Kidd blood group and are crucial for the maintenance of a constant urea concentration gradient in the renal medulla and, through this, the kidney's ability to concentrate urine. It is speculated that rs17674580, or other sequence variants in LD with it, indirectly modifies UBC risk by affecting urine production. If confirmed, this would support the 'urogenous contact hypothesis' that urine production and voiding frequency modify the risk of UBC.
  •  
13.
  • Stacey, Simon N, et al. (författare)
  • A germline variant in the TP53 polyadenylation signal confers cancer susceptibility.
  • 2011
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 43:11, s. 1098-103
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify new risk variants for cutaneous basal cell carcinoma, we performed a genome-wide association study of 16 million SNPs identified through whole-genome sequencing of 457 Icelanders. We imputed genotypes for 41,675 Illumina SNP chip-typed Icelanders and their relatives. In the discovery phase, the strongest signal came from rs78378222[C] (odds ratio (OR) = 2.36, P = 5.2 × 10(-17)), which has a frequency of 0.0192 in the Icelandic population. We then confirmed this association in non-Icelandic samples (OR = 1.75, P = 0.0060; overall OR = 2.16, P = 2.2 × 10(-20)). rs78378222 is in the 3' untranslated region of TP53 and changes the AATAAA polyadenylation signal to AATACA, resulting in impaired 3'-end processing of TP53 mRNA. Investigation of other tumor types identified associations of this SNP with prostate cancer (OR = 1.44, P = 2.4 × 10(-6)), glioma (OR = 2.35, P = 1.0 × 10(-5)) and colorectal adenoma (OR = 1.39, P = 1.6 × 10(-4)). However, we observed no effect for breast cancer, a common Li-Fraumeni syndrome tumor (OR = 1.06, P = 0.57, 95% confidence interval 0.88-1.27).
  •  
14.
  • Styrkarsdottir, Unnur, et al. (författare)
  • Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31.
  • 2014
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 46:5, s. 498-502
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoarthritis is the most common form of arthritis and is a major cause of pain and disability in the elderly. To search for sequence variants that confer risk of osteoarthritis of the hand, we carried out a genome-wide association study (GWAS) in subjects with severe hand osteoarthritis, using variants identified through the whole-genome sequencing of 2,230 Icelanders. We found two significantly associated loci in the Icelandic discovery set: at 15q22 (frequency of 50.7%, odds ratio (OR) = 1.51, P = 3.99 × 10(-10)) in the ALDH1A2 gene and at 1p31 (frequency of 0.02%, OR = 50.6, P = 9.8 × 10(-10)). Among the carriers of the variant at 1p31 is a family with several members in whom the risk allele segregates with osteoarthritis. The variants within the ALDH1A2 gene were confirmed in replication sets from The Netherlands and the UK, yielding an overall association of OR = 1.46 and P = 1.1 × 10(-11) (rs3204689).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14
Typ av publikation
tidskriftsartikel (13)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (13)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Helgadottir, Hafdis ... (8)
Thorleifsson, Gudmar (6)
Thorsteinsdottir, Un ... (6)
Stefansson, Kari (6)
Lindblom, Annika (4)
Jonsdottir, Ingileif (4)
visa fler...
Kong, Augustine (4)
Lohmander, Stefan (3)
Lundin, Pär (3)
Sulem, Patrick (3)
Eriksson, Maria (3)
Kloppenburg, Margree ... (3)
Hofman, Albert (3)
Valdes, Ana M. (3)
Slagboom, P. Eline (3)
Evangelou, Evangelos (3)
Meulenbelt, Ingrid (3)
Ingvarsson, Thorvald ... (3)
Styrkarsdottir, Unnu ... (3)
Engström, Gunnar (2)
Nilsson, Peter (2)
Deloukas, Panos (2)
Jonsson, Eirikur (2)
Rafnar, Thorunn (2)
Tryggvadottir, Laufe ... (2)
Kiemeney, Lambertus ... (2)
Johansson, Anna C. V ... (2)
Thutkawkorapin, Jess ... (2)
Gudmundsson, Julius (2)
Sigurdsson, Asgeir (2)
Rudnai, Peter (2)
Liu, Wen (2)
Rivadeneira, Fernand ... (2)
Uitterlinden, André ... (2)
Zeggini, Eleftheria (2)
Ioannidis, John P. A ... (2)
Metrustry, Sarah (2)
Steinthorsdottir, Va ... (2)
Ollier, William E. R ... (2)
Doherty, Michael (2)
Wilkinson, J. Mark (2)
Arden, Nigel K. (2)
Kumar, Rajiv (2)
Gudbjartsson, Daníel ... (2)
Kvarnung, Malin (2)
Koppova, Kvetoslava (2)
Johannsdottir, Hrefn ... (2)
Ralston, Stuart H (2)
Bos, Steffan D. (2)
Panoutsopoulou, Kall ... (2)
visa färre...
Lärosäte
Karolinska Institutet (9)
Uppsala universitet (6)
Stockholms universitet (4)
Lunds universitet (4)
Linköpings universitet (3)
Göteborgs universitet (1)
visa fler...
Umeå universitet (1)
visa färre...
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (11)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy