SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Helleday Thomas) "

Sökning: WFRF:(Helleday Thomas)

  • Resultat 1-25 av 212
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Duro, Eris, et al. (författare)
  • Identification of the MMS22L-TONSL Complex that Promotes Homologous Recombination
  • 2010
  • Ingår i: Molecular Cell. - : Elsevier BV. - 1097-2765 .- 1097-4164. ; 40:4, s. 632-644
  • Tidskriftsartikel (refereegranskat)abstract
    • Budding yeast Mms22 is required for homologous recombination (HR)-mediated repair of stalled or broken DNA replication forks. Here we identify a human Mms22-like protein (MMS22L) and an MMS22L-interacting protein, NF kappa BIL2/TONSL. Depletion of MMS22L or TONSL from human cells causes a high level of double-strand breaks (DSBs) during DNA replication. Both proteins accumulate at stressed replication forks, and depletion of MMS22L or TONSL from cells causes hypersensitivity to agents that cause S phase-associated DSBs, such as topoisomerase (TOP) inhibitors. In this light, MMS22L and TONSL are required for the HR-mediated repair of replication fork-associated DSBs. In cells depleted of either protein, DSBs induced by the TOP1 inhibitor camptothecin are resected normally, but the loading of the RAD51 recombinase is defective. Therefore, MMS22L and TONSL are required for the maintenance of genome stability when unscheduled DSBs occur in the vicinity of DNA replication forks.
  •  
3.
  • Gad, Helge, et al. (författare)
  • MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool
  • 2014
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 508:7495, s. 215-221
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bindin the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.
  •  
4.
  • Gustafsson, Nina M. S., et al. (författare)
  • Targeting PFKFB3 radiosensitizes cancer cells and suppresses homologous recombination
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The glycolytic PFKFB3 enzyme is widely overexpressed in cancer cells and an emerging anticancer target. Here, we identify PFKFB3 as a critical factor in homologous recombination (HR) repair of DNA double-strand breaks. PFKFB3 rapidly relocates into ionizing radiation (IR)-induced nuclear foci in an MRN-ATM-gamma H2AX-MDC1-dependent manner and co-localizes with DNA damage and HR repair proteins. PFKFB3 relocalization is critical for recruitment of HR proteins, HR activity, and cell survival upon IR. We develop KAN0438757, a small molecule inhibitor that potently targets PFKFB3. Pharmacological PFKFB3 inhibition impairs recruitment of ribonucleotide reductase M2 and deoxynucleotide incorporation upon DNA repair, and reduces dNTP levels. Importantly, KAN0438757 induces radiosensitization in transformed cells while leaving non-transformed cells unaffected. In summary, we identify a key role for PFKFB3 enzymatic activity in HR repair and present KAN0438757, a selective PFKFB3 inhibitor that could potentially be used as a strategy for the treatment of cancer.
  •  
5.
  • Herold, Nikolas, et al. (författare)
  • Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies
  • 2017
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 23:2, s. 256-263
  • Tidskriftsartikel (refereegranskat)abstract
    • The cytostatic deoxycytidine analog cytarabine (ara-C) is the most active agent available against acute myelogenous leukemia (AML). Together with anthracyclines, ara-C forms the backbone of AML treatment for children and adults'. In AML, both the cytotoxicity of ara-C in vitro and the clinical response to ara-C therapy are correlated with the ability of AML blasts to accumulate the active metabolite ara-C triphosphate (ara-CTP)(2-5), which causes DNA damage through perturbation of DNA synthesis(6). Differences in expression levels of known transporters or metabolic enzymes relevant to ara-C only partially account for patient-specific differential ara-CTP accumulation in AML blasts and response to ara-C treatment(7-9). Here we demonstrate that the deoxynucleoside triphosphate (dNTP) triphosphohydrolase SAM domain and HD domain 1 (SAMHD1) promotes the detoxification of intracellular ara-CTP pools. Recombinant SAMHD1 exhibited ara-CTPase activity in vitro, and cells in which SAMHD1 expression was transiently reduced by treatment with the simian immunodeficiency virus (SIV) protein Vpx were dramatically more sensitive to ara-C-induced cytotoxicity. CRISPR-Cas9-mediated disruption of the gene encoding SAMHD1 sensitized cells to ara-C, and this sensitivity could be abrogated by ectopic expression of wild-type (WT), but not dNTPase-deficient, SAMHD1. Mouse models of AML lacking SAMHD1 were hypersensitive to ara-C, and treatment ex vivo with Vpx sensitized primary patient derived AML blasts to ara-C. Finally, we identified SAMHD1 as a risk factor in cohorts of both pediatric and adult patients with de novo AML who received ara-C treatment. Thus, SAMHD1 expression levels dictate patient sensitivity to ara-C, providing proof-of-concept that the targeting of SAMHD1 by Vpx could be an attractive therapeutic strategy for potentiating ara-C efficacy in hematological malignancies.
  •  
6.
  • Issaeva, Natalia, et al. (författare)
  • 6-Thioguanine Selectively Kills BRCA2-Defective Tumors and Overcomes PARP Inhibitor Resistance
  • 2010
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 70:15, s. 6268-6276
  • Tidskriftsartikel (refereegranskat)abstract
    • Familial breast and ovarian cancers are often defective in homologous recombination (HR) due to mutations in the BRCA1 or BRCA2 genes. Cisplatin chemotherapy or poly(ADP-ribose) polymerase (PARP) inhibitors were tested for these tumors in clinical trials. In a screen for novel drugs that selectively kill BRCA2-defective cells, we identified 6-thioguanine (6TG), which induces DNA double-strand breaks (DSB) that are repaired by HR. Furthermore, we show that 6TG is as efficient as a PARP inhibitor in selectively killing BRCA2-defective tumors in a xenograft model. Spontaneous BRCA1-defective mammary tumors gain resistance to PARP inhibitors through increased P-glycoprotein expression. Here, we show that 6TG efficiently kills such BRCA1-defective PARP inhibitor-resistant tumors. We also show that 6TG could kill cells and tumors that have gained resistance to PARP inhibitors or cisplatin through genetic reversion of the BRCA2 gene. Although HR is reactivated in PARP inhibitor-resistant BRCA2-defective cells, it is not fully restored for the repair of 6TG-induced lesions. This is likely to be due to several recombinogenic lesions being formed after 6TG. We show that BRCA2 is also required for survival from mismatch repair-independent lesions formed by 6TG, which do not include DSBs. This suggests that HR is involved in the repair of 6TG-induced DSBs as well as mismatch repair-independent 6TG-induced DNA lesion. Altogether, our data show that 6TG efficiently kills BRCA2-defective tumors and suggest that 6TG may be effective in the treatment of advanced tumors that have developed resistance to PARP inhibitors or platinum-based chemotherapy. Cancer Res; 70(15); 6268-76. (C) 2010 AACR.
  •  
7.
  • Llona-Minguez, Sabin, et al. (författare)
  • Discovery of the First Potent and Selective Inhibitors of Human dCTP Pyrophosphatase 1
  • 2016
  • Ingår i: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 59:3, s. 1140-1148
  • Tidskriftsartikel (refereegranskat)abstract
    • The dCTPase pyrophosphatase 1 (dCTPase) regulates the intracellular nucleotide pool through hydrolytic degradation of canonical and noncanonical nucleotide triphosphates (dNTPs). dCTPase is highly expressed in multiple carcinomas and is associated with cancer cell sternness. Here we report on the development of the first potent and selective dCTPase inhibitors that enhance the cytotoxic effect of cytidine analogues in leukemia cells. Boronate 30 displays a promising in vitro ADME profile, including plasma and mouse microsomal half-lives, aqueous solubility, cell permeability and CYP inhibition, deeming it a suitable compound for in vivo studies.
  •  
8.
  • Llona-Minguez, Sabin, et al. (författare)
  • Diverse heterocyclic scaffolds as dCTP pyrophosphatase 1 inhibitors. Part 2 : Pyridone- and pyrimidinone-derived systems
  • 2017
  • Ingår i: Bioorganic & Medicinal Chemistry Letters. - : Elsevier BV. - 0960-894X .- 1464-3405. ; 27:15, s. 3219-3225
  • Tidskriftsartikel (refereegranskat)abstract
    • Two screening campaigns using commercial (Chembridge DiverSET) and proprietary (Chemical Biology Consortium Sweden, CBCS) compound libraries, revealed a number of pyridone- and pyrimidinone-derived systems as inhibitors of the human dCTP pyrophosphatase 1 (dCTPase). In this letter, we present their preliminary structure-activity-relationships (SAR) and ligand efficiency scores (LE and LLE).
  •  
9.
  • Llona-Minguez, Sabin, et al. (författare)
  • Identification of Triazolothiadiazoles as Potent Inhibitors of the dCTP Pyrophosphatase 1
  • 2017
  • Ingår i: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 60:5, s. 2148-2154
  • Tidskriftsartikel (refereegranskat)abstract
    • The dCTP pyrophosphatase 1 (dCTPase) is involved in the regulation of the cellular dNTP pool and has been linked to cancer progression. Here we report on the discovery of a series of 3,6-disubstituted triazolothiadiazoles as potent dCTPase inhibitors. Compounds 16 and 18 display good correlation between enzymatic inhibition and target engagement, together with efficacy in a cellular synergy model, deeming them as a promising starting point for hit -to-lead development.
  •  
10.
  • MacKay, Craig, et al. (författare)
  • Identification of KIAA1018/FAN1, a DNA Repair Nuclease Recruited to DNA Damage by Monoubiquitinated FANCD2
  • 2010
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 142:1, s. 65-76
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA interstrand crosslinks (ICLs) are highly toxic because they block the progression of replisomes. The Fanconi Anemia (FA) proteins, encoded by genes that are mutated in FA, are important for repair of ICLs. The FA core complex catalyzes the monoubiquitination of FANCD2, and this event is essential for several steps of ICL repair. However, how monoubiquitination of FANCD2 promotes ICL repair at the molecular level is unknown. Here, we describe a highly conserved protein, KIAA1018/MTMR15/FAN1, that interacts with, and is recruited to sites of DNA damage by, the monoubiquitinated form of FANCD2. FAN1 exhibits endonuclease activity toward 50 flaps and has 5' exonuclease activity, and these activities are mediated by an ancient VRR_nuc domain. Depletion of FAN1 from human cells causes hypersensitivity to ICLs, defects in ICL repair, and genome instability. These data at least partly explain how ubiquitination of FANCD2 promotes DNA repair.
  •  
11.
  • Page, Brent D. G., et al. (författare)
  • Targeted NUDT5 inhibitors block hormone signaling in breast cancer cells
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • With a diverse network of substrates, NUDIX hydrolases have emerged as a key family of nucleotide-metabolizing enzymes. NUDT5 (also called NUDIX5) has been implicated in ADPribose and 8-oxo-guanine metabolism and was recently identified as a rheostat of hormone-dependent gene regulation and proliferation in breast cancer cells. Here, we further elucidate the physiological relevance of known NUDT5 substrates and underscore the biological requirement for NUDT5 in gene regulation and proliferation of breast cancer cells. We confirm the involvement of NUDT5 in ADP-ribose metabolism and dissociate a relationship to oxidized nucleotide sanitation. Furthermore, we identify potent NUDT5 inhibitors, which are optimized to promote maximal NUDT5 cellular target engagement by CETSA. Lead compound, TH5427, blocks progestin-dependent, PAR-derived nuclear ATP synthesis and subsequent chromatin remodeling, gene regulation and proliferation in breast cancer cells. We herein present TH5427 as a promising, targeted inhibitor that can be used to further study NUDT5 activity and ADP-ribose metabolism.
  •  
12.
  • Rudd, Sean, et al. (författare)
  • Ribonucleotide reductase inhibitors suppress SAMHD1 ara-CTPase activity enhancing cytarabine efficacy
  • 2020
  • Ingår i: EMBO Molecular Medicine. - : Blackwell Publishing Ltd. - 1757-4676 .- 1757-4684.
  • Tidskriftsartikel (refereegranskat)abstract
    • The deoxycytidine analogue cytarabine (ara-C) remains the backbone treatment of acute myeloid leukaemia (AML) as well as other haematological and lymphoid malignancies, but must be combined with other chemotherapeutics to achieve cure. Yet, the underlying mechanism dictating synergistic efficacy of combination chemotherapy remains largely unknown. The dNTPase SAMHD1, which regulates dNTP homoeostasis antagonistically to ribonucleotide reductase (RNR), limits ara-C efficacy by hydrolysing the active triphosphate metabolite ara-CTP. Here, we report that clinically used inhibitors of RNR, such as gemcitabine and hydroxyurea, overcome the SAMHD1-mediated barrier to ara-C efficacy in primary blasts and mouse models of AML, displaying SAMHD1-dependent synergy with ara-C. We present evidence that this is mediated by dNTP pool imbalances leading to allosteric reduction of SAMHD1 ara-CTPase activity. Thus, SAMHD1 constitutes a novel biomarker for combination therapies of ara-C and RNR inhibitors with immediate consequences for clinical practice to improve treatment of AML. © 2020 The Authors. Published under the terms of the CC BY 4.0 license
  •  
13.
  • Wallner, Olov, et al. (författare)
  • Optimization of N-Piperidinyl-Benzimidazolone Derivatives as Potent and Selective Inhibitors of 8-Oxo-Guanine DNA Glycosylase 1
  • 2023
  • Ingår i: ChemMedChem. - : Wiley. - 1860-7179 .- 1860-7187. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • 8-oxo Guanine DNA Glycosylase 1 is the initiating enzyme within base excision repair and removes oxidized guanines from damaged DNA. Since unrepaired 8-oxoG could lead to G : C→T : A transversion, base removal is of utmost importance for cells to ensure genomic integrity. For cells with elevated levels of reactive oxygen species this dependency is further increased. In the past we and others have validated OGG1 as a target for inhibitors to treat cancer and inflammation. Here, we present the optimization campaign that led to the broadly used tool compound TH5487. Based on results from a small molecule screening campaign, we performed hit to lead expansion and arrived at potent and selective substituted N-piperidinyl-benzimidazolones. Using X-ray crystallography data, we describe the surprising binding mode of the most potent member of the class, TH8535. Here, the N-Piperidinyl-linker adopts a chair instead of a boat conformation which was found for weaker analogues. We further demonstrate cellular target engagement and efficacy of TH8535 against a number of cancer cell lines.
  •  
14.
  • Zhang, Si Min, et al. (författare)
  • Development of a chemical probe against NUDT15
  • 2020
  • Ingår i: Nature Chemical Biology. - : Springer Science and Business Media LLC. - 1552-4450 .- 1552-4469. ; 16:10, s. 1120-1128
  • Tidskriftsartikel (refereegranskat)abstract
    • The NUDIX hydrolase NUDT15 was originally implicated in sanitizing oxidized nucleotides, but was later shown to hydrolyze the active thiopurine metabolites, 6-thio-(d)GTP, thereby dictating the clinical response of this standard-of-care treatment for leukemia and inflammatory diseases. Nonetheless, its physiological roles remain elusive. Here, we sought to develop small-molecule NUDT15 inhibitors to elucidate its biological functions and potentially to improve NUDT15-dependent chemotherapeutics. Lead compound TH1760 demonstrated low-nanomolar biochemical potency through direct and specific binding into the NUDT15 catalytic pocket and engaged cellular NUDT15 in the low-micromolar range. We also employed thiopurine potentiation as a proxy functional readout and demonstrated that TH1760 sensitized cells to 6-thioguanine through enhanced accumulation of 6-thio-(d)GTP in nucleic acids. A biochemically validated, inactive structural analog, TH7285, confirmed that increased thiopurine toxicity takes place via direct NUDT15 inhibition. In conclusion, TH1760 represents the first chemical probe for interrogating NUDT15 biology and potential therapeutic avenues.
  •  
15.
  • Abdallah, Qasem M. A., et al. (författare)
  • Minor structural modifications to alchemix influence mechanism of action and pharmacological activity
  • 2012
  • Ingår i: Biochemical Pharmacology. - : Elsevier BV. - 0006-2952 .- 1356-1839 .- 1873-2968. ; 83:11, s. 1514-1522
  • Tidskriftsartikel (refereegranskat)abstract
    • Alchemix is an exemplar of a class of anthraquinone with efficacy against multidrug resistant tumours. We have explored further the mechanism of action of alchemix and investigated the effect of extending its side arm bearing the alkylating functionality with regard to DNA binding and activity against multidrug resistant cancer cells. Increasing the distance between the intercalating chromophore and the alkylating functionality of ICT2901 (propyl), ICT2902 (butyl) and ICT2903 (pentyl), led to a higher number of DNA alkylation sites, more potent topoisomerase II inhibition and generated more apoptotic and necrotic cells when analysed in p53-proficient HCT116 cells. Intriguingly, alchemix, the compound with the shortest distance between its intercalative chromophore and alkylating functionality (ethyl), did not conform to this SAR. A different toxicity pattern against DNA repair defective CHO cell lines as well as arrest of cells in Cl supports a somewhat distinct mode of action by alchemix compared with its analogues. Importantly, both alchemix and ICT2901 demonstrated greater cytotoxic activity against anthraquinone-resistant MCF-7/adr cells than wild-type MCF-7 cells. Subtle synthetic modification in this anthraquinone series has led to significant changes to the stability of DNA-compound complexes and cellular activity. Given that the failure of chemotherapy in the clinic is often associated with MDR, the results of both alchemix and ICT2901 represent important advances towards improved therapies.
  •  
16.
  • Al-Minawi, Ali Z., et al. (författare)
  • The ERCC1/XPF endonuclease is required for completion of homologous recombination at DNA replication forks stalled by inter-strand cross-links
  • 2009
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 37:19, s. 6400-6413
  • Tidskriftsartikel (refereegranskat)abstract
    • Both the ERCC1-XPF complex and the proteins involved in homoIogous recombination (HR) have critical roles in inter-strand cross-link (ICL) repair. Here, we report that mitomycin C-induced lesions inhibit replication fork elongation. Furthermore, mitomycin C-induced DNA double-strand breaks (DSBs) are the result of the collapse of ICL-stalled replication forks. These are not formed through replication run off, as we show that mitomycin C or cisplatin-induced DNA lesions are not incised by global genome nucleotide excision repair (GGR). We also suggest that ICL-lesion repair is initiated either by replication or transcription, as the GGR does not incise ICL-lesions. Furthermore, we report that RAD51 foci are induced by cisplatin or mitomycin C independently of ERCC1, but that mitomycin C-induced HR measured in a reporter construct is impaired in ERCC1-defective cells. These data suggest that ERCC1-XPF plays a role in completion of HR in ICL repair. We also find no additional sensitivity to cisplatin by siRNA co-depletion of XRCC3 and ERCC1, showing that the two proteins act on the same pathway to promote survival.
  •  
17.
  •  
18.
  • Al-Minawi, Ali Z, et al. (författare)
  • The ERCC1/XPF endonuclease is required for efficient single-strand annealing and gene conversion in mammalian cells
  • 2008
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 36:1, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • The mammalian ERCC1-XPF endonuclease has a suggested role in the repair of DNA double-strand breaks (DSB) by single-strand annealing (SSA). Here, we investigated the role of ERCC1 in homologous recombination in mammalian cells, and confirm a role of ERCC1 in SSA. Interestingly, we also report an unexpected role for ERCC1 in gene conversion. This provides support that gene conversion in mammalian somatic cells is carried out through synthesis-dependent strand annealing, rather than through a double Holliday Junction mechanism. Moreover, we find low frequencies of SSA and gene conversion in G1-arrested cells, suggesting that SSA is not a frequent DSB repair pathway in G1-arrested mammalian cells, even in the presence of perfect repeats. Furthermore, we find that SSA is not influenced by inhibition of CDK2 (using Roscovitine), ATM (using Caffeine and KU55933), Chk1 (using CEP-3891) or DNA-PK (using NU7026).
  •  
19.
  • Al-Ubaidi, Firas L. T., et al. (författare)
  • CASTRATION THERAPY OF PROSTATE CANCER RESULTS IN DOWNREGULATION OF HIF-1 alpha LEVELS
  • 2012
  • Ingår i: International Journal of Radiation Oncology, Biology, Physics. - : Elsevier BV. - 0360-3016 .- 1879-355X. ; 82:3, s. 1243-1248
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose: Neoadjuvant androgen deprivation in combination with radiotherapy of prostate cancer is used to improve radioresponsiveness and local tumor control. Currently, the underlying mechanism is not well understood. Because hypoxia causes resistance to radiotherapy, we wanted to test whether castration affects the degree of hypoxia in prostate cancer. Methods and Materials: In 14 patients with locally advanced prostate cancer, six to 12 prostatic needle core biopsy specimens were taken prior to castration therapy. Bilateral orchidectomy was performed in 7 patients, and 7 were treated with a GnRH-agonist (leuprorelin). After castrationm two to four prostatic core biopsy specimens were taken, and the level of hypoxia-inducible factor-1 alpha (HIF-1 alpha) in cancer was determined by immunofluorescence. Results: Among biopsy specimens taken before castration, strong HIF-1 alpha expression (mean intensity above 30) was shown in 5 patients, weak expression (mean intensity 10-30) in 3 patients, and background levels of HIF-1 alpha (mean intensity 0-10) in 6 patients. Downregulation of HIF-1 alpha expression after castration was observed in all 5 patients with strong HIF-1 alpha precastration expression. HIF-1 alpha expression was also reduced in 2 of 3 patients with weak HIF-1 alpha precastration expression. Conclusions: Our data suggest that neoadjuvant castration decreases tumor cell hypoxia in prostate cancer, which may explain increased radiosensitivity after castration.
  •  
20.
  • Arnaudeau, Catherine, et al. (författare)
  • DNA Double-strand Breaks Associated with Replication Forks are Predominantly Repaired by Homologous Recombination Involving an Exchange Mechanism in Mammalian Cells
  • 2001
  • Ingår i: Journal of Molecular Biology. - : Elsevier. - 0022-2836. ; 307:5, s. 1235-45
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA double-strand breaks (DSB) represent a major disruption in the integrity of the genome. DSB can be generated when a replication fork encounters a DNA lesion. Recombinational repair is known to resolve such replication fork-associated DSB, but the molecular mechanism of this repair process is poorly understood in mammalian cells. In the present study, we investigated the molecular mechanism by which recombination resolves camptothecin (CPT)-induced DSB at DNA replication forks. The frequency of homologous recombination (HR) was measured using V79/SPD8 cells which contain a duplication in the endogenous hprt gene that is resolved by HR. We demonstrate that DSB associated with replication forks induce HR at the hprt gene in early S phase. Further analysis revealed that these HR events involve an exchange mechanism. Both the irs1SF and V3-3 cell lines, which are deficient in HR and non-homologous end joining (NHEJ), respectively, were found to be more sensitive than wild-type cells to DSB associated with replication forks. The irs1SF cell line was more sensitive in this respect than V3-3 cells, an observation consistent with the hypothesis that DSB associated with replication forks are repaired primarily by HR. The frequency of formation of DSB associated with replication forks was not affected in HR and NHEJ deficient cells, indicating that the loss of repair, rather than the formation of DSB associated with replication forks is responsible for the increased sensitivity of the mutant strains. We propose that the presence of DSB associated with replication forks rapidly induces HR via an exchange mechanism and that HR plays a more prominent role in the repair of such DSB than does NHEJ
  •  
21.
  •  
22.
  • Bauerschmidt, Christina, et al. (författare)
  • Cohesin phosphorylation and mobility of SMC1 at ionizing radiation-induced DNA double-strand breaks in human cells
  • 2011
  • Ingår i: Experimental Cell Research. - : Elsevier BV. - 0014-4827 .- 1090-2422. ; 317:3, s. 330-337
  • Tidskriftsartikel (refereegranskat)abstract
    • Cohesin, a hetero-tetrameric complex of SMC1, SMC3, Rad21 and Scc3, associates with chromatin after mitosis and holds sister chromatids together following DNA replication. Following DNA damage, cohesin accumulates at and promotes the repair of DNA double-strand breaks. In addition, phosphorylation of the SMC1/3 subunits contributes to DNA damage-induced cell cycle checkpoint regulation. The aim of this study was to determine the regulation and consequences of SMC1/3 phosphorylation as part of the cohesin complex. We show here that the ATM-dependent phosphorylation of SMC1 and SMC3 is mediated by H2AX, 53BP1 and MDC1. Depletion of RAD21 abolishes these phosphorylations, indicating that only the fully assembled complex is phosphorylated. Comparison of wild type SMC1 and SMC1S966A in fluorescence recovery after photo-bleaching experiments shows that phosphorylation of SMC1 is required for an increased mobility after DNA damage in G2-phase cells, suggesting that ATM-dependent phosphorylation facilitates mobilization of the cohesin complex after DNA damage.
  •  
23.
  •  
24.
  • Beck, Halfdan, et al. (författare)
  • Regulators of cyclin-dependent kinases are crucial for maintaining genome integrity in S phase
  • 2010
  • Ingår i: Journal of Cell Biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 188:5, s. 629-638
  • Tidskriftsartikel (refereegranskat)abstract
    • Maintenance of genome integrity is of critical importance to cells. To identify key regulators of genomic integrity, we screened a human cell line with a kinome small interfering RNA library. WEE1, a major regulator of mitotic entry, and CHK1 were among the genes identified. Both kinases are important negative regulators of CDK1 and -2. Strikingly, WEE1 depletion rapidly induced DNA damage in S phase in newly replicated DNA, which was accompanied by a marked increase in single-stranded DNA. This DNA damage is dependent on CDK1 and -2 as well as the replication proteins MCM2 and CDT1 but not CDC25A. Conversely, DNA damage after CHK1 inhibition is highly dependent on CDC25A. Furthermore, the inferior proliferation of CHK1-depleted cells is improved substantially by codepletion of CDC25A. We conclude that the mitotic kinase WEE1 and CHK1 jointly maintain balanced cellular control of Cdk activity during normal DNA replication, which is crucial to prevent the generation of harmful DNA lesions during replication.
  •  
25.
  • Behndig, Annelie, et al. (författare)
  • Airway antioxidant and inflammatory responses to diesel exhaust exposure in healthy humans.
  • 2006
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 27:2, s. 359-365
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulmonary cells exposed to diesel exhaust (DE) particles in vitro respond in a hierarchical fashion with protective antioxidant responses predominating at low doses and inflammation and injury only occurring at higher concentrations. In the present study, the authors examined whether similar responses occurred in vivo, specifically whether antioxidants were upregulated following a low-dose DE challenge and investigated how these responses related to the development of airway inflammation at different levels of the respiratory tract where particle dose varies markedly. A total of 15 volunteers were exposed to DE (100 microg x m(-3) airborne particulate matter with a diameter of <10 microm for 2 h) and air in a double-blinded, randomised fashion. At 18 h post-exposure, bronchoscopy was performed with lavage and mucosal biopsies taken to assess airway redox and inflammatory status. Following DE exposure, the current authors observed an increase in bronchial mucosa neutrophil and mast cell numbers, as well as increased neutrophil numbers, interleukin-8 and myeloperoxidase concentrations in bronchial lavage. No inflammatory responses were seen in the alveolar compartment, but both reduced glutathione and urate concentrations were increased following diesel exposure. In conclusion, the lung inflammatory response to diesel exhaust is compartmentalised, related to differing antioxidant responses in the conducting airway and alveolar regions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 212
Typ av publikation
tidskriftsartikel (168)
annan publikation (19)
doktorsavhandling (11)
forskningsöversikt (7)
patent (6)
konferensbidrag (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (169)
övrigt vetenskapligt/konstnärligt (34)
populärvet., debatt m.m. (9)
Författare/redaktör
Helleday, Thomas (190)
Schultz, Niklas (38)
Jemth, Ann-Sofie (33)
Stenmark, Pål (29)
Johansson, Fredrik (22)
Scobie, Martin (22)
visa fler...
Lundin, Cecilia (21)
Loseva, Olga (18)
Erixon, Klaus (17)
Wiita, Elisee (16)
Homan, Evert (15)
Helleday, Ragnberth (13)
Jenssen, Dag (12)
Bryant, Helen E. (12)
Elvers, Ingegerd (12)
Desroses, Matthieu (11)
Koolmeister, Tobias (11)
Llona-Minguez, Sabin (11)
Issaeva, Natalia (10)
Kalderen, Christina (10)
Sandström, Thomas (9)
Stenfors, Nikolai (9)
Meuth, Mark (9)
Blomberg, Anders (9)
Sanjiv, Kumar (9)
Petermann, Eva (9)
Lundbäck, Thomas (8)
Saleh-Gohari, Nasrol ... (8)
Gustafsson, Robert (8)
Tanoglidi, Anna (8)
Rasti, Azita (8)
Lundeberg, Joakim (7)
Jenmalm Jensen, Anni ... (7)
Djureinovic, Tatjana (7)
Pourazar, Jamshid (7)
Häggblad, Maria (7)
Berglund, Emelie (7)
Marklund, Maja (7)
Berglund, Ulrika War ... (7)
Homan, Evert J. (7)
Gad, Helge (6)
Groth, Petra (6)
Sörensen, Claus Stor ... (6)
Tarish, Firas (6)
Baranczewski, Pawel (6)
Karsten, Stella (6)
Pham, Therese (6)
Höglund, Andreas (6)
Sarno, Antonio (6)
Bräutigam, Lars (6)
visa färre...
Lärosäte
Stockholms universitet (174)
Karolinska Institutet (75)
Uppsala universitet (24)
Umeå universitet (19)
Kungliga Tekniska Högskolan (13)
Lunds universitet (13)
visa fler...
RISE (4)
Göteborgs universitet (2)
Linköpings universitet (2)
Örebro universitet (1)
Karlstads universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (205)
Odefinierat språk (6)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (85)
Medicin och hälsovetenskap (60)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy